Model Question Paper 3 Heat and Thermodynamics 3

11th Standard

	Physics Reg. No. :	\prod
Answer all the Questions		
Tim	e : 01:00:00 Hrs Total Mark	ks:50
	Part A 3x	x 1 = 3
1)	A beaker full of hot water is kept in a room. If it cools from 80^{o} C to 75^{o} C in t_{1} minutes, from 75^{o} C to 70^{o} C in t_{2} minutes and from 70^{o} C to 65^{o} C in t_{3} minutes, then	
	(a) $t_1=t_2=t_3$ (b) $t_1< t_2=t_3$ (c) $t_1< t_2< t_3$ (d) $t_1> t_2> t_3$	
2)	Which of the following will radiate heat to the large extent?	
	(a) white polished surface (b) White rough surface (c) Black polished surface (d) Black rough surface	
3)	A block of ice in a room at normal temperature	
	(a) does not radiate (b) radiates less but absorbs more (c) radiates more than it absorbs (d) radiates as much as it absorbs	
	Part B 6x2	2 = 12
4)	Define absorptive power.	
5)	Define Stefan's law.	
6)	Explain Fery's concept of a perfect black body.	
7)	Write the application of Kirchoff's law	
	Application of Kirchoff's law.	
8)	Define isothermal process. Derive an expression for the work done during the process.	
9)	State Wien's displacement law.	
	Part C 5x3	3 = 15
10)	State Kelvin's Planck's statement of second law of thermodynamics.	
11)	What is heat engine?	
12)	Define conduction.	
13)	What is radiation?	
14)	What is a perfect black body?	
	Part D 4x5	5 = 20
	The surface temperature of a spherical hot body is 1000 K. Calculate the rate at which energy is radiated. (Given $\sigma=5.67X10^{-8}~Wm^{-2}K^{-4}$)	
	Compare the rate of loss of heat from a black metal sphere at 2270 C with the rate of loss of heat from the same sphere at 1270 C. The temperature of the surroundings is 270 C.	
17)	Calculate the surface temperature of the Sun $\left(\lambda_m=4753\mathring{A}\right)$.	
18)	An object is heated and then allowed to cool when its temperature is 70^{0} C, its rate of cooling is 3^{0} C per minute and when the temperature is 60^{0} C, the rate of cooling is 2.5^{0} C	per
	minute.Determine the temperature of the surroundings.	
