Model Question Paper

Differential Equations - Part IV

12th Standard

	Business Maths
cwor all the questions	

Reg.No.:			

I.Answer all the questions. II.Use blue pen only.

Time: 01:30:00 Hrs Total Marks: 85 $5 \times 1 = 5$

1) The solution of the equation of the type $rac{dy}{dx}+py=0$, (P is a function of x) is given by (a) $ye^{\int pdx}=c$ (b) $y\int pdx=c$ (c) $xe^{\int pdx}=y$ (d) y=cx

2) The solution of the equation of the type $rac{dy}{dx}+px=Q$ (P and Q are functions of y) is $\text{(a)} \ \ y = \int Q e^{\int p dx} \, dy + c \qquad \text{(b)} \ \ y e^{\int p dx} = \int Q e^{\int p dx} \, dx + c \qquad \text{(c)} \ \ x e^{\int p dy} = \int Q e^{\int p dy} \, dy + c \qquad \text{(d)} \ \ x e^{\int p dy} = \int Q e^{\int p dx} \, dx + c$

3) The integrating factor of $\,x rac{dy}{dx} - y = e^x$ is

(a) logx (b) $e^{\frac{-1}{x}}$ (c) $\frac{1}{x}$ (d) $\frac{-1}{x}$ 4) The integrating factor of $(1+x^2)\frac{dy}{dx}+xy=(1+x^2)^3$ is

(a)
$$\sqrt{1+x^2}$$
 (b) $log(1+x^2)$ (c) $e^{tan^{-1}x}$ (d) $log^{(tan^{-1}x)}$

5) The integrating factor of $\frac{dy}{dx}+\frac{2y}{x}=x^3$ is (a) 2logx (b) e^{x^2} (c) $3log(x^2)$ (d) x^2

(a)
$$2logx$$
 (b) e^{x^2} (c) $3log(x^2)$ (d) x^2

Part-B 5 x 6 = 30

 $\begin{array}{ll} \text{6)} & \text{Solve}: \frac{dy}{dx} + y \ cot \ x = cosec \ x \\ \text{7)} & \text{Solve}: x \frac{dy}{dx} - 3y = x^2 \\ \text{8)} & \text{solve}: \frac{dy}{dx} - y \ tan \ x = e^x secx \end{array}$

9) Find the differential equation by eliminating the arbitrary constants a and b from $y = a \tan x + b \sec x$.

10) Solve the equation $(1-x^2)\frac{dy}{dx}-xy=1$

Part-C 5 x 10 = 50

11) Form the differential equation of the family of curves $y = A \cos 5x + B \sin 5x$ where A and B are parameters.

12) Form the differential equation of the family of curves $y = ae^{3x} + be^x$ where a and b are parameters.

13) Find the differential equation of a family of curves given by $y = a \cos(mx + b)$, a and b being arbitrary constants.

14) Solve $cosx rac{dy}{dx} + y \quad sinx = 1$

15) Solve $\frac{dy}{dx} + ay = e^x$ (where $a \neq -1$)
