Model Question Paper

Discrete Mathematics - Part III

	12th Standard					
	Maths	Reg.No.:				
١.	Answer all the questions.		-		-	
Ш	.Use Blue pen only.					
Time	e : 01:30:00 Hrs			Tota	al Mark	
	Section-A				5 x	1=5
	Which of the following is not a group?					
	(a) $(Z_n, +n)$ (b) $(Z, +)$ (c) $(Z, .)$ (d) $(R, +)$					
2)	In the set of integers with operation $*$ defined by a $*$ b = a+ b – ab, the value of 3 $*$ (4 $*$ 5) is					
	(a) 25 (b) 15 (c) 10 (d) 5					
3)	The order of [7] in $(Z_9, +9)$ is					
	(a) 9 (b) 6 (c) 3 (d) 1					
4)	The value of [3] + 11([5] + ₁₁ [6]) is					
	(a) [0] (b) [1] (c) [2] (d) [3]					
5)	In the set of real numbers R, an operation * is defined by a * b = $\sqrt{a^2 + b^2}$. Then the value of $(3 * 4) * 5$ is					
	(a) 5 (b) $5\sqrt{2}$ (c) 25 (d) 50					
	Section-B				5 x 3	3 = 15
6)	Construct the truth table for the following statements: $((\sim p) \lor (\sim q))$					
7)	Construct the truth table for the following statements: $\sim ((\sim p) \land q)$					
8)	Prove that identity element of a group is unique.					
9)	Prove that inverse element of an element of a group is unique.					
10)	Show that $\left(a^{-1} ight)^{-1}=a orall a\in G$, a group.					
	Section-C				3 x 6	5 = 18
11)	State and prove cancellation laws on groups.					
12)	State and prove reversal law on inverse of a group.					
13)	Construct the truth table for the following statements $(Pee q)\wedge (\sim q)$					
	Section-D				3 x 10) = 30
14)	Show the set G of all matrices of the form $egin{pmatrix} x & x \ x & x \end{pmatrix}$ where $x\in R-\{0\}$ is a group under matrix multiplication.					
15)	a) Show that the set $G=\left\{a+b\sqrt{2}/a,b\in Q ight\}$ is an infinite <mark>abelian</mark> group with respect to addition.					
	(OR)					
	b) Show that the set $G=\{2^n \mid n \ \epsilon \ Z\}$ an a <mark>belian group under multiplication.</mark>					
