Model Question Paper

Discrete Mathematics - Part IV

12th Standard

	Maths Reg.No.:				
I	I.Answer all questions				
II.U	Ise Blue pen only.				
Tim	ne : 01:00:00 Hrs	-	Total N		
	Section-A			5 x	1 = !
1)	In the set of real numbers R, an operation * is defined by a * b = $\sqrt{a^2 + b^2}$. Then the value of (3 * 4) * 5 is				
	(a) 5 (b) $5\sqrt{2}$ (c) 25 (d) 50				
2)	Which of the following is correct?				
	(a) An element of a group can have more than one inverse. (b) If every element of a group is its own inverse, then the group is abelian.				
	(c) The set of all 2 x 2 real matrices forms a group under matrix multiplication. (d) $(a * b)^{-1} = a^{-1} * b^{-1}$ for all a, b ϵ G				
3)	The order of –i in the multiplicative group of 4 th roots of unity is				
	(a) 4 (b) 3 (c) 2 (d) 1				
4)	The truth values of the following statements are				
	i) Paris is in France				
	ii)sinx is an even function				
	iii) Every square matrix is non-singular				
	iv)Jupiter is a planet				
	(a) TFFT (b) FTFT (c) FTTF (d) FFTT				
5)	If p is true and q is unknown then				
	(a) $\sim p$ is true (b) $p \lor (-p)$ is false (c) $p \lor (\sim p)$ is true (d) $p \lor q$ is true				
	Section-B			3 x	3 = 9
6)	Prove that identity element of a group is unique.				
7)	Prove that inverse element of an element of a group is unique.				
8)	Show that $\left(a^{-1} ight)^{-1}=a orall a\in G,$ a group.				
	Section-C			5 x 6	5 = 30
9)	Prove that (C,+) is an infinite abelian group				
10)	Show that the set of all non-zero compl <mark>ex numb</mark> ers is an abelia <mark>n group under the us</mark> ual multiplication of complex numbers				
11)	Show that the set of all 2 X 2 non-singular matrices forms a non-abelian infinite group under matrix multiplication, (where the entries belong to R).				
12)	Construct the truth table for the following statements; $\sim ((\sim p) \land (\sim q))$				
13)	Show that $((\sim q) \land p) \land q$ is a contradiction.				
	Section-D		3	3 x 10) = 3(
14)	Show that the set G of all rational numbers except -1 forms an abelian group with respect to the operation * given by $a*b=a+b+ab$ for all a ,	b ϵ	G		
15)	a) Show that the set $\{[1],[3],[4],[5],[9]\}$ forms an abelian group under multiplication modulo 11.				
	(OR)				
	Show that the set of all matrices of the form $\begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix}$, $a \in R - \{0\}$ forms an abelian group under matrix multiplication.				
