Model Question Paper

Application of differentiation- I - Part IV

12th Standard

	Business Maths	Reg.No.:			l
I.Answer all the questions.					

I.Answer all the questions.
II.Use Blue pen only.
III.Question No 13 is compulsory.

Time: 01:15:00 Hrs Total Marks: 75

4 x 1 = 4

1) The slope of the normal to the curve $\,\sqrt{x}+\sqrt{y}=5\,$ at (9, 4) is

(a)
$$\frac{2}{3}$$
 (b) $-\frac{2}{3}$ (c) $\frac{3}{2}$ (d) $-\frac{3}{2}$

2) For the curve $\ y=1+ax-x^2$ the tangent at (1 , -2) is parallel to x - axis . The value of `a' is

3) The slope of the tangent to the curve y= cost , x = $\sin \mathbf{t}$ at $\,t=rac{\pi}{4}$ is

(a) 1 (b) 0 (c)
$$\frac{1}{\sqrt{2}}$$
 (d) -1

4) The point at which the tangent to the curve $y^2=x\,$ makes an angle $\,{\pi\over 4}\,$ with the x-axis is

(a)
$$(\frac{1}{2},\frac{1}{4})$$
 (b) $(\frac{1}{2},\frac{1}{2})$ (c) $(\frac{1}{4},\frac{1}{2})$ (d) $(1,-1)$

Section-B 5 x 6 = 30

- 5) Find the slope of the tangent line at the point (0,5) of the curve $y=\frac{1}{3}(x^2+10x-15)$. At what point of the curve the slope of the tangent line is $\frac{8}{5}$?
- 6) For the cost function $y=3x(\frac{x+7}{x+5})+5$, prove that the marginal cost falls continuously as the output x increases .

Section-A

- 7) Find the equations of the tangents and normals to the following curves $y^2 = 4x$ at(1,2)
- 8) Find the equation of the tangent and normal to the demand curve $y = 36 x^2$ When y = 11.
- 9) At what points on the curve $3y=x^2$ the tangents are inclined at 45^o to the x axis .

Section-C 4 x 10 = 40

- 10) Find the equation of the tangent and normal to the supply curve $y = x^2 + x + 2$ When x = 6.
- 11) prove that $\frac{x}{a}+\frac{y}{b}=1$ touches the curve y=b $e^{-x/a}$ at the point where the curve cuts the y axis.
- 12) prove that the curves $y=x^2-3x+1$ and x(y+3)=4 intersect at right angles at the point (2 , -1) .
- 13) a) Find the equation of the tangent and normal to the curve y(x-2)(x-3)-x+7=0 at the point where it cuts the x axis.

Find the equation of the tangent and normal at the point (a~sec heta,b~tan heta) on the hyperbola $rac{x^2}{a^2}-rac{y^2}{b^2}=1$.