Model Question Paper

Applications of matrices and determinants - Part I

12th Standard

Reg.No.:			

I.Answer all the questions. II.Use Blue pen only.

Time: 01:00:00 Hrs

Total Marks: 75

6 x 1 = 6

Section-A

1) If the minor of a_{23} equals the cofactor of a_{23} in $\left|a_{ij}\right|$ then the minor of a_{23} is

(a) The Adjoint of
$$\begin{pmatrix} 0 & 2 \\ 2 & 0 \end{pmatrix}$$
 is

(a) $\begin{pmatrix} 0 & 2 \\ 2 & 0 \end{pmatrix}$ (b) $\begin{pmatrix} 0 & -2 \\ -2 & 0 \end{pmatrix}$ (c) $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ (d) $\begin{pmatrix} 0 & 2 \\ 2 & 0 \end{pmatrix}$

3) The Adjoint of
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 is

(a)
$$\begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$
 (b)
$$\begin{bmatrix} \frac{1}{3} & 0 & 0 \\ 0 & \frac{1}{3} & 0 \\ 0 & 0 & \frac{1}{3} \end{bmatrix}$$
 (c)
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 (d)
$$\begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

- (a) the inverse of A $\,$ (b) the transpose of A $\,$ (c) the Adjoint of A $\,$ (d) $\,$ 2A $\,$
- 5) If A is a square matrix of order 3 then |AdjA| is

(a)
$$|A|^2$$
 (b) $|A|$ (c) $|A|^3$ (d) $|A|^4$

6) If |A| = 0 then |AdjA| is

Section-B 5 x 6 = 30

Find the Adjoint of the matrix
$$\begin{pmatrix} -1 & 3 \\ 2 & 1 \end{pmatrix}$$

7) Find the Adjoint of the matrix
$$\begin{pmatrix} -1 & 3 \\ 2 & 1 \end{pmatrix}$$

8) Find the Adjoint of the matrix $\begin{bmatrix} 2 & 0 & -1 \\ 5 & 1 & 0 \\ 0 & 1 & 3 \end{bmatrix}$

Show that the Adjoint of the matrix
$$A = \begin{bmatrix} -4 & -3 & -3 \\ 1 & 0 & 1 \\ 4 & 4 & 3 \end{bmatrix}$$
 is A itself

Given
$$A=\begin{pmatrix} 3 & 1 \\ 4 & 2 \end{pmatrix}$$
 , $B=\begin{pmatrix} -1 & 0 \\ 2 & 1 \end{pmatrix}$ verify that Adj (AB) = (Adj B) (Adj A)

11) In the second order matrix $A=(a_{ij})$, given that $a_{ij}=i+j$, write out the matrix A and verify that |Adj A| = |A|

 $4 \times 10 = 40$

12) If
$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & -3 \\ 2 & -1 & 3 \end{bmatrix}$$
, verify that A(Adj A) = (Adj A) A = |A| I.

Given
$$A=egin{bmatrix}1&-1&1\\2&1&1\\3&1&-1\end{bmatrix}$$
 verify that $|Adj|A|=|A|^2$

- 14) Solve by matrix method the equations x-2y+3z=1, 3x-y+4z=3, 2x+y-2z=-1.
- 15) Solve by determinant method the equations 2x + 2y z 1 = 0, x + y z = 0, 3x + 2y 3z = 1.
