Model Question Paper 2 ANALYTICAL GEOMETRY 2

11th Standard

	Maths	Reg.No.:		П			٦
Ans	swer all the Questions				-	-	
Tim	ne : 02:00:00 Hrs		Total Marks: 75				
	Part A					9 x 1 = 9	9
1)	If the slope of a straight line is $\frac{2}{3}$, then the slope of teh line perpendicular to it, is						
	(a) $\frac{2}{3}$ (b) $-\frac{2}{3}$ (c) $\frac{3}{2}$ (d) $-\frac{3}{2}$						
2)	The graph of xy=0 is						
	(a) a point (b) a line (c) a pair of intersecting lines (d) a pair of parallel lines						
3)	If the pair of straight lines given by $ax^2+2hxy+by^2=0$ are perpendicular, then						
	(a) $ab=0$ (b) $a+b=0$ (c) $a-b=0$ (d) $a=0$						
4)	When $h^2=ab$, the angle between pair of straight lines $ax^2+2hxy+by^2=0$ is						
	(a) $\frac{\pi}{4}$ (b) $\frac{\pi}{6}$ (c) $\frac{\pi}{2}$ (d) 0°						
5)	If $2x^2+3xy-cy^2=0$ represents a pair of prependicular lines then c=						
	(a) -2 (b) $-\frac{1}{2}$ (c) 2 (d) $\frac{1}{2}$						
6)	If $2x^2 + kxy + 4y^2 = 0$ represents a pair of parallel lines then k						
	(a) ± 32 (b) $\pm 2\sqrt{2}$ (c) $\pm 4\sqrt{2}$ (d) ± 8						
7)	The condition for $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$ represent a pair of straight lines is						
	(a) $abc + 2fgh - bf^2 - ag^2 - ch^2 = 0$ (b) $abc + 2fgh - ag^2 - bf^2 - ch^2 = 0$ (c) $abc + 2fgh - ah^2 - bg^2 - cf^2 = 0$ (d) $abc + 2fgh - ah^2 - bg^2 - cf^2 = 0$	abc+2fgh-a	if^2 –	– bg^2 –	-ch	$^{2} = 0$	
8)	The length of the diameter of a circle with centre (2,1) and passing through the point (-2,1) is						
	(a) 4 (b) 8 (c) $4\sqrt{5}$ (d) 2						
9)	Given that (1,-1) is the centre of the circle $x^2+y^2+ax+by-9=0$ ts radius is						
	(a) 3 (b) $\sqrt{2}$ (c) $\sqrt{17}$ (d) 11						
	Part B				10) x 2 = 2	0
10)	Show that 9x²+24xy+16y²+21x+28y+6=0 represents a pair of parallel straight lines and find the distance between them.						
11)	The slope of one of the straight lines ax ² +2hxy+by ² =0 is twice that of the other, show that 8h ² =9ab.						
12)	Find the combined equation of the straight lines through the origin, one of which is parallel to and other is perpendicular to the straight lin	e 2x+y+1=0					
13)	Find the combined equation of the straight lines whose separate equations are x+2y-3=0 and 3x+y+5=0						
14)	Find k such that the equation $12x^2+7xy-12y^2-x+7y+k=0$ represents a pair of straight lines. Find the separate equations of the straight lines are	nd also the angl	e bet	ween t	hem	١.	
15)	If the equation 12x²-10xy+2y²+14x-5y+c represents a pair of straight lines, find the value of c. Find the separate equations of the straight lines	es and also the	angle	betwe	en t	hem.	
16)	For what value of k does $12x^2+7xy+ky^2+13x-y+3=0$ represents a pair of straight lines? Also write the separate equations.						
17)	Show that $3x^2+10xy+8y^2+14x+22y+15=0$ represents a pair of straight lines and the angle between them is $\tan^{-1}\left(\frac{2}{11}\right)$						
18)	Show that the circles $x^2+y^2-2x+6y+6=0$ and $x^2+y^2-5x+6y+15=0$ touch each other.						
19)	Show that each of the circles $x^2+y^2+4y-1=0$, $x^2+y^2+6x+y+8=0$ and $x^2+y^2-4x-4y-37=0$ touches the other two.						
	Part C				7	x 3 = 2	1
20)	Find the equation of the straight line, which cut off intercepts on the axes whose sum and product are 1 and - 6 respectively.						
21)	Find the intercepts made by the line 7x+3y-6 = 0 on the co-ordinate axis.						
22)	What are the points on x-axis whose perpendicular distance from the straight line $\frac{x}{3} + \frac{y}{4} = 1$ is 4?						
23)	Find the distance of the line 4x-y= 0 from the point (4,1) measured along the straight line making an angle of 135° with the positive direction	n of the x-axis.					
24)	Find the centre and radius of the following circles: $x^2+y^2=1$						
25)	Find the centre and radius of the following circles:						
	$x^2+y^2-4x-6y-9=0$						
26)	Find the centre and radius of the following circles: $x^2+y^2-8x-6y-24=0$						
	Part D				5	x 5 = 2	5
	Find the equation of the tangent to the circle $x^2+y^2=16$ which are perpendicular to the line $x+y=8$						
	Find the equation of the tangent to the circle $x^2+y^2=16$ which are parallel to the line $x+y=8$						
29)	Find the equation of the tangent to the circle $x^2+y^2-4x+2y-21=0$ at $(1, 4)$.						

30) Find the value of p so that the line 3x+4y-p=0 is a tangent to $x^2+y^2-64=0$

31) Find the co-ordinates of the middle point of the chord which the circle $x^2+y^2+2x+y-3=0$ cuts off by the line y=x-1.