Model Question Paper

Differential Equations - Part I

12th Standard

Reg.No.:				ĺ
Maths Reg.No.:			 - 1	í.

I.Answer all questions.

II.Use blue pen only.

Time: 01:30:00 Hrs Total Marks: 75 $3 \times 1 = 3$

Section-A

- 1) The integrating factor of $\,rac{dy}{dx}+2rac{y}{x}=e^{4x}\,$ is
 - (a) $\log x$ (b) x^2 (c) e^x (d) \mathbf{x}
- 2) If $\cos x$ is an integrating factor of the differential equation $rac{dy}{dx}+Py=Q$ then P=
 - (a) $-\cot x$ (b) $\cot x$ (c) $\tan x$ (d) $-\tan x$
- 3) The integrating factor of $dx+xdy=e^{-y}\sec^2ydy$ is
 - (a) e^x (b) e^{-x} (c) e^y (d) e^{-y}

Section-B 5 x 3 = 15

- 4) Form the differential equations by eliminating arbitrary constants given in brackets
 - (i) $y^2 = 4ax \{a\}$
- 5) Solve: $(D^2 + 5D + 6) y = 0$
- 6) Solve: $(D^2 + 6D + 9) y = 0$

Section-C 3 x 6 = 18

- 7) Form the differential equation from the following equations $Ax^2 + By^2 = 1$
- Find the differential equation of the family of straight lines $y=mx+\frac{a}{m}$ when (i) m is the parameter; (ii) a is the parameter; (iii) a, m both are parameters.
- Find the differential equation that will represent the family of all circles having centres on the x-axis and the radius is unity.
- 10) a) Solve: $\left(D^2+D+1\right)y=0$
 - Solve the following: $\frac{dy}{dx} = \frac{y(x-2y)}{x(x-3y)}$

Section-D 5 x 10 = 50

- 11) Find the cubic polynomial in x which attains its maximum value 4 and minimum value 0 at x = -1 and 1 respectively.
- 12) Solve: $(2\sqrt{xy} x) dy + y dx = 0$
- 13) Solve: $(x^3 + 3xy^2) dx + (y^3 + 3x^2y) dy = 0$
- 14) Solve: $(1 + e^{x/y}) dx + e^{x/y} (1 x/y) dy = 0$ given that y = 1,where x = 0
- 15) Solve the following: $(x^2 + y^2) dx + 3xy dy = 0$
