Model Question Paper

Thermodynamics - II - Part III

12th Standard

Chemistry	Reg.No.:			

I.Answer all the questions. II.Use blue pen only.

1) When $\triangle G > 0$ the process is

(a) spontaneous (b) feasible (c) no0n feasible (d) equilibrium

2) $-\triangle G$ represent all forms of work other than

(a) electrical work (b) work of expansion (c) non feasible (d) equilibrium

3) The condition for completion of reaction is

(a) $riangle G_r^\circ < 0$ (b) $riangle G_r^\circ > 0$ (c) $riangle G_r^\circ = 0$ (d) $riangle G_r^\circ$ is ∞

4) Which of the following liquid obeys Trouton's rule?

(a) H₂ (b) H₂O (c) CH₃COOH (d) CHCl₅

5) In which of the following reaction $\triangle S$ is negative?

(a) reversible (b) irreversible (c) spontaneous (d) non spontaneous

Part-B 5 x 3 = 15

- 6) Write the mathematical expression for entropy change in various thermodynamic process
- 7) Write about the spontaneity of reactions based on entropy.
- 8) Why H₂ and He do not obey Trouton's rule?
- 9) Why polar substances do not obey Trouton's rule?
- 10) Why acetic acid does not obey Trouton's rule?

Part-C 4x5=2

- 11) In the reaction $\frac{1}{2}N_{2(g)} + 23H_{2(g)} \rightarrow NH_{3(g)}$. The standard entropies of N2(g), H2(g) and NH3(g) are 191.6, 130.5 and 192.5 JK⁻¹ mol⁻¹ respectively. If free energy change of the reaction is -16.67 kJ. Calculate the ΔH° reaction for the formation of NH3 at 298K.
- 12) Predict whether the reaction $CO_{(g)} + H2O_{(g)} \rightarrow CO_{2(g)} + H_{2(g)}$ is spontaneous or not. The standard free energies of formation of $CO_{(g)}$, $H2O_{(g)}$ and $CO_{2(g)}$ are -137.27, -228.6 and -394.38 kJ mole⁻¹respectively.
- 13) Calculate the standard free energy change of the reaction: $4NH3_{(g)} + 5O_2 \rightarrow 4NO_{(g)} + 6H_2O_{(l)}$ and predict on the feasibility of the reaction. Standard free energies of formation of $NH_{3(g)}$, $NO_{(g)}$ and $H2O_{(i)}$ are 16.65, 86.61, -237.20 kJ. mole⁻¹ respectively.
- 14) The standard heat of formation of H₂O_(i) from its elements is –285.83 kJ.mole⁻¹ and the standard entropy change for the same reaction is –327 JK-1at 25°C. Will the reaction be spontaneous at 25°C?

Part-D 2X10=20

- 15) a) The boiling point of benzene at 1 atm is 80.2°C. Calculate the enthalpy of vaporisation of benzene at its boiling point.
 - b) The standard entropy change ΔS_r^o for

 $\mathsf{CH}_{4(g)} + 2\mathsf{O}_{2(g)} \to \mathsf{CO}_{2(g)} + 2\mathsf{H}_2\mathsf{O}_{(i)} \text{ is -242.98 JK}^{-1} \text{ at 25°C. Calculate the standard reaction enthalpy for the above reaction if standard Gibbs energy of formation of <math>\mathsf{CH}_{4(g)}$, $\mathsf{CO}_{2(g)}$ and

 $H_2O_{(i)}$ are -50.72, -394.36 and - 237.13 kJ mol⁻¹ respectively.

- 16) a) Standard enthalpy change for combustion of methane is –890 kJ mol⁻¹ and standard entropy change for the same combustive reaction is -242.98 J.K⁻¹ at 25°C. Calculate ΔG° of the reaction.
 - b) The standard entropy change for the reaction $C_3H_6(g) + 2\frac{9}{2}O_{2(g)} \rightarrow 3CO_2 + 3H_2O \text{ is } -339.23 \text{ JK}^1 \text{ at } 25^\circ\text{C}. \text{ Calculate the standard reaction enthalpy change if the standard Gibbs energy of formation of } C_3H_{6(g)}, CO_{2(g)} \text{ and } H_2O_{(l)} \text{ are } 62.78, -394.36 \text{ and } -237.13 \text{ kJ.mol}^1 \text{ respectively.}$
