CBSE 11th Standard Maths Subject Complex Numbers and Quadratic Equations Ncert Exemplar 4 Marks Questions With Solution 2021
By QB365 on 27 May, 2021
QB365 Provides the updated NCERT Examplar Questions for Class 11 Maths, and also provide the detail solution for each and every ncert examplar questions , QB365 will give all kind of study materials will help to get more marks
QB365 - Question Bank Software
CBSE 11th Standard Maths Subject Complex Numbers and Quadratic Equations Ncert Exemplar 4 Marks Questions With Solution 2021
11th Standard CBSE
-
Reg.No. :
Mathematics
-
What is the value of \(\frac { { i }^{ 4x+1 }-{ i }^{ 4x-1 } }{ 2 } ?\)
(a) -
Find the real value of 'a' for which 3i3- 2ai2+(1-a)i + 5 is real.
(a) -
If f(z) = \(\frac { 7-z }{ 1-{ z }^{ 2 } } \) where z= 1 + 2i , then find \(|f(z)|\)
(a) -
If \(\frac { z-1 }{ z+1 } \) is a purely imaginary number \((z\neq -1)\) then find the value of \(|z|\)
(a) -
Find \(\left| (1+i)\frac { (2+i) }{ (3+i) } \right| \)
(a)
4 Marks
*****************************************
CBSE 11th Standard Maths Subject Complex Numbers and Quadratic Equations Ncert Exemplar 4 Marks Questions With Solution 2021 Answer Keys
-
Consider, \(\frac { { i }^{ 4x+1 }-{ i }^{ 4x-1 } }{ 2 } =\frac { { i }^{ 4x }.i-{ i }^{ 4x }.{ i }^{ -1 } }{ 2 } =\frac { i-\frac { 1 }{ i } }{ 2 } \quad [\because { i }^{ 4x }=1]\)
\(=\frac { { i }^{ 2 }-1 }{ 2i } =\frac { -2 }{ 2i } \quad [\because { i }^{ 2=-1 }]\)
\(=\frac { -1 }{ i } =\frac { -i }{ { i }^{ 2 } } =\frac { -i }{ -1 } =i\quad [\because { i }^{ 2 }=-1]\)
-
3i3- 2ai2+(1-a)i + 5
= 3( - i) + 2a + (1 - a)i+5 [i3 = -i and i2 = -1]
= (2a + 5) + i(1-a-3), which will be real,
if 1 - a - 3 =0,
i.e, a = - 2 -
\(\frac { 2-i }{ 2 } \)
-
Let z = x + iy, then
\(\frac { z-1 }{ z+1 } =\frac { ({ x }^{ 2 }-1)+{ y }^{ 2 }+i[y(x+1)-y(x-1)] }{ ({ x }^{ 2 }+1)^{ 2 }+y^{ 2 } } \\ \)
\(\because \frac { z-1 }{ z+1 } \) is purely imaginary.
\(\therefore Re(\frac { z-1 }{ z+1 } ) =0\ i.e.\ \frac { ({ x }^{ 2 }-1)+{ y }^{ 2 } }{ ({ x }^{ 2 }+1)^{ 2 }+y^{ 2 } } =0\)
\({ x }^{ 2 }-1-{ y }^{ 2 }=0\ \Rightarrow { x }^{ 2 }+{ y }^{ 2 }=1= |z|=1\) -
Let,
\(z=\frac { (1+i)(2+i) }{ (3+i) } =\frac { 2+i+2i+{ i }^{ 2 } }{ 3+i } =\frac { 2+3i-1 }{ 3+i } \)
\( \Rightarrow z=\frac { 1+3i }{ 3+i } \quad [\because { i }^{ 2 }=-1]\)
Now,
\(\left| z \right| =\left| \frac { 1+3i }{ 3+i } \right| =\frac { \left| 1+3i \right| }{ \left| 3+i \right| } \quad \left[ \left| \frac { { z }_{ 1 } }{ { z }_{ 2 } } \right| =\frac { \left| { z }_{ 1 } \right| }{ \left| { z }_{ 2 } \right| } \right] \)
\(=\frac { \sqrt { { 1 }^{ 2 }+{ 3 }^{ 2 } } }{ \sqrt { { 3 }^{ 2 }+{ 1 }^{ 2 } } } =1\)
Hence, \(\left| (1+i)\frac { (2+i) }{ (3+i) } \right| \)
4 Marks