CBSE 12th Standard Maths Subject Continuity and Differentiability Case Study Questions 2021
By QB365 on 21 May, 2021
QB365 Provides the updated CASE Study Questions for Class 12 Maths, and also provide the detail solution for each and every case study questions . Case study questions are latest updated question pattern from NCERT, QB365 will helps to get more marks in Exams
QB365 - Question Bank Software
CBSE 12th Standard Maths Continuity and Differentiability Case Study Questions 2021
12th Standard CBSE
-
Reg.No. :
Maths
-
Let f(x) be a real valued function, then its
Left Hand Derivative (L.H.D.) : \(\begin{equation} \mathrm{L} f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a-h)-f(a)}{-h} \end{equation}\)
Right Hand Derivative (R.H.D.) : \(\begin{equation} \mathrm{Rf}^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h} \end{equation}\)
Also, a function jfx) is said to be differentiable at x = a if its L.H.D. and R.H.D. at x = a exist and are equal
For the function \(\begin{equation} f(x)=\left\{\begin{array}{l} |x-3|, x \geq 1 \\ \frac{x^{2}}{4}-\frac{3 x}{2}+\frac{13}{4}, x<1 \end{array}\right. \end{equation}\) answer the following questions
(i) R.H.D. of f(x) at x = 1is(a) 1 (b) -1 (c) 0 (d) 2 (ii) L.H.D. of f(x) at x = 1 is
(a) 1 (b) -1 (c) 0 (d) 2 (iii) f(x) is non-differentiable at
(a) x = 1 (b) x = 2 (c) x = 3 (d) x = 4 (iv) Find the value of f'(2).
(a) 1 (b) 2 (c) 3 (d) -1 (v) The value of f'( -1) is
(a) 2 (b) 1 (c) -2 (d) -1 (a) -
The function f(x) will be discontinuous at x = a if f(x) has
(a) Discontinuity of first kind \(\begin{equation} \lim _{h \rightarrow 0} f(a-h) \text { and } \lim _{h \rightarrow 0} f(a+h) \end{equation}\) both exist but are not equal. If is also known as irremovable discontinuity.
(b) Discontinuity of second kind: If none of the limits \(\begin{equation} \lim _{h \rightarrow 0} f(a-h) \text { and } \lim _{h \rightarrow 0} f(a+h) \end{equation}\) exist.
(c) Removable discontinuity: \(\begin{equation} \lim _{h \rightarrow 0} f(a-h) \text { and } \lim _{h \rightarrow 0} f(a+h) \end{equation}\) both exist and equal but not equal to f(a).
Based on the above information, answer the following questions.
(i) If \(\begin{equation} f(x)=\left\{\begin{array}{ll} \frac{x^{2}-9}{x-3}, & \text { for } x \neq 3 \\ 4, & \text { for } x=3 \end{array}\right. \end{equation}\) ,then at x= 3(a) f has removable discontinuity (b) f is continuous (c) f has irremovable discontinuity (d) none of these (ii) Let \(\begin{equation} f(x)=\left\{\begin{array}{ll} x+2, & \text { if } x \leq 4 \\ x+4, & \text { if } x>4 \end{array}\right. \end{equation}\) ,then at x = 4
(a) f is continuous (b) f has removable discontinuity (c) f has irremovable discontinuity (d) none of these (iii) Consider the function f(x) defined \(\begin{equation} f(x)=\left\{\begin{array}{l} \frac{x^{2}-4}{x-2} \\ 5 \end{array}\right. \end{equation}\), for \(\begin{equation} x \neq 2 \end{equation}\)
(a) f has removable discontinuity (b) f has irremovable discontinuity (c) f is continuous (d) f is continuous if f(2) = 3 (iv) If \(\begin{equation} f(x)=\left\{\begin{array}{cc} \frac{x-|x|}{x}, & if\ x \neq 0 \\ 2, & if\ x=0 \end{array}\right. \end{equation}\) ,then x = 0
a) f is continuous (b) f has removable discontinuity (c) f has irremovable discontinuity (d) none of these (v) If \(\begin{equation} f^{\prime}(x)=\left\{\begin{array}{cl} \frac{e^{x}-1}{\log (1+2 x)}, & \text { if } x \neq 0 \\ 7, & \text { if } x=0 \end{array}\right. \end{equation}\), then at x = 0
(a) f is continuous if f(0) = 2 (b) f is continuous (c) f has irremovable discontinuity (d) f has removable discontinuity (a) -
(a) A function f(x) is said to be continuous in an open interval (a, b), if it is continuous at every point in this interval.
(b) A function f(x) is said to be continuous in the closed interval [a, b], if f(x) is continuous in (a, b) and \(\begin{equation} \lim _{h \rightarrow 0} f(a+h)=f(a) \text { and } \lim _{h \rightarrow 0} f(b-h)=f(b) \end{equation}\)
If function \(\begin{equation} f(x)=\left\{\begin{array}{ll} \frac{\sin (a+1) x+\sin x}{x} & , x<0 \\ c & , x=0 \\ \frac{\sqrt{x+b x^{2}}-\sqrt{x}}{b x^{3 / 2}} & , x>0 \end{array}\right. \end{equation}\) is continuous at x = 0, then answer the following questions.
(i) The value of a is(a) -3/2 (b) 0 (c) 1/2 (d) -1/2 (ii) The value of b is
(a) 1 (b) -1 (c) 0 (d) any real number (iii) The value of c is
(a) 1 (b) 1/2 (c) -1 (d) -1/2 (iv) The value of a + c is
(a) 1 (b) 0 (c) -1 (d) -2 (v) The value oi c - a is
(a) 1 (b) 0 (c) -1 (d) 2 (a) -
If y = f(u) is a differentiable function of u and u = g(x) is a differentiable function of x, then y = f[g(x)] is a differentiable function of x and \(\begin{equation} \frac{d y}{d x}=\frac{d y}{d u} \times \frac{d u}{d x} \end{equation}\). This rule is also known as CHAIN RULE.
Based on the above information, find the derivative of functions w.r.t. x in the following questions
(i) \(\begin{equation} \cos \sqrt{x} \end{equation}\)(a) \(\begin{equation} \frac{-\sin \sqrt{x}}{2 \sqrt{x}} \end{equation}\) (b) \(\begin{equation} \frac{\sin \sqrt{x}}{2 \sqrt{x}} \end{equation}\) (c) \(\begin{equation} \sin \sqrt{x} \end{equation}\) (d) \(\begin{equation} -\sin \sqrt{x} \end{equation}\) (ii) \(\begin{equation} 7^{x+\frac{1}{x}} \end{equation}\)
(a) \(\begin{equation} \left(\frac{x^{2}-1}{x^{2}}\right) \cdot 7^{x+\frac{1}{x}} \cdot \log 7 \end{equation}\) (b) \(\begin{equation} \left(\frac{x^{2}+1}{x^{2}}\right) \cdot 7^{x+\frac{1}{x}} \cdot \log 7 \end{equation}\) (c) \(\begin{equation} \left(\frac{x^{2}-1}{x^{2}}\right) \cdot 7^{x-\frac{1}{x}} \cdot \log 7 \end{equation}\) (d) \(\begin{equation} \left(\frac{x^{2}+1}{x^{2}}\right) \cdot 7^{x-\frac{1}{x}} \cdot \log 7 \end{equation}\) (iii) \(\begin{equation} \sqrt{\frac{1-\cos x}{1+\cos x}} \end{equation}\)
(a) \(\begin{equation} \frac{-1}{x^{2}+b^{2}}+\frac{1}{x^{2}+a^{2}} \end{equation}\) (b) \(\begin{equation} \frac{1}{x^{2}+b^{2}}+\frac{1}{x^{2}+a^{2}} \end{equation}\) (c) \(\begin{equation} \frac{1}{x^{2}+b^{2}}-\frac{1}{x^{2}+a^{2}} \end{equation}\) (d) none of these (v) (d) :\(\begin{equation} \sec ^{-1} x+\operatorname{cosec}^{-1} \frac{x}{\sqrt{x^{2}-1}} \end{equation}\)
(a) \(\begin{equation} \frac{2}{\sqrt{x^{2}-1}} \end{equation}\) (b) \(\begin{equation} \frac{-2}{\sqrt{x^{2}-1}} \end{equation}\) (c) \(\begin{equation} \frac{1}{|x| \sqrt{x^{2}-1}} \end{equation}\) (d) \(\begin{equation} \frac{2}{|x| \sqrt{x^{2}-1}} \end{equation}\) (a) -
If a relation between x and y is such that y cannot be expressed in terms of x, then y is called an implicit function of x.
When a given relation expresses y as an implicit function of x and we want to find \(\begin{equation} \frac{d y}{d x} \end{equation}\).then
we differentiate every term of the given relation w.r.t. x. remembering that a term in y is first differentiated w.r.t. y and then multiplied by \(\begin{equation} \frac{d y}{d x} \end{equation}\).
Based on the above information, find the value of \(\begin{equation} \frac{d y}{d x} \end{equation}\) in each of the following questions
(i) x3+x2y+xy2+y3=81(a) \(\begin{equation} \frac{\left(3 x^{2}+2 x y+y^{2}\right)}{x^{2}+2 x y+3 y^{2}} \end{equation}\) (b) \(\begin{equation} \frac{-\left(3 x^{2}+2 x y+y^{2}\right)}{x^{2}+2 x y+3 y^{2}} \end{equation}\) (c) \(\begin{equation} \frac{\left(3 x^{2}+2 x y-y^{2}\right)}{x^{2}-2 x y+3 y^{2}} \end{equation}\) (d) \(\begin{equation} \frac{3 x^{2}+x y+y^{2}}{x^{2}+x y+3 y^{2}} \end{equation}\) (ii) xy = c- y
(a) \(\begin{equation} \frac{x-y}{(1+\log x)} \end{equation}\) (b) \(\begin{equation} \frac{x+y}{(1+\log x)} \end{equation}\) (c) \(\begin{equation} \frac{x-y}{x(1+\log x)} \end{equation}\) (d) \(\begin{equation} \frac{x+y}{x(1+\log x)} \end{equation}\) (iii) esiny = xy
(a) \(\begin{equation} \frac{-y}{x(y \cos y-1)} \end{equation}\) (b) \(\begin{equation} \frac{y}{y \cos y-1} \end{equation}\) (c) \(\begin{equation} \frac{y}{y \cos y+1} \end{equation}\) (d) \(\begin{equation} \frac{y}{x(y \cos y-1)} \end{equation}\) (iv) sin2 x + cos2y = 1
(a) \(\begin{equation} \frac{\sin 2 y}{\sin 2 x} \end{equation}\) (b) \(\begin{equation} -\frac{\sin 2 x}{\sin 2 y} \end{equation}\) (c) \(\begin{equation} -\frac{\sin 2 y}{\sin 2 x} \end{equation}\) (d) \(\begin{equation} \frac{\sin 2 x}{\sin 2 y} \end{equation}\) (v) \(\begin{equation} y=(\sqrt{x})^{\sqrt{x}} \end{equation}\)
(a) \(\begin{equation} \frac{-y^{2}}{x(2-y \log x)} \end{equation}\) (b) \(\begin{equation} \frac{y^{2}}{2+y \log x} \end{equation}\) (c) \(\begin{equation} \frac{y^{2}}{x(2+y \log x)} \end{equation}\) (d) \(\begin{equation} \frac{y^{2}}{x(2-y \log x)} \end{equation}\) (a)
Case Study Questions
*****************************************
CBSE 12th Standard Maths Continuity and Differentiability Case Study Questions 2021 Answer Keys
-
we have,\(\begin{equation} f(x)=\left\{\begin{array}{ll} x-3 & , x \geq 3 \\ 3-x & , 1 \leq x<3 \\ \frac{x^{2}}{4}-\frac{3 x}{2}+\frac{13}{4} & , x<1 \end{array}\right. \end{equation}\)
(i) (b) : \(\begin{equation} \mathrm{R} f^{\prime}(1)=\lim _{h \rightarrow 0} \frac{f(1+h)-f(1)}{h} \end{equation}\)
\(\begin{equation} =\lim _{h \rightarrow 0} \frac{3-(1+h)-2}{h}=\lim _{h \rightarrow 0}-\frac{h}{h}=-1 \end{equation}\)
(ii) (b) : \(\begin{equation} \mathrm{L}_{\mathrm{s}}^{\prime}(1)=\lim _{h \rightarrow 0} \frac{f(1-h)-f(1)}{-h} \end{equation}\)
\(\begin{equation} =\lim _{h \rightarrow 0} \frac{-1}{h}\left[\frac{(1-h)^{2}}{4}-\frac{3(1-h)}{2}+\frac{13}{4}-2\right] \end{equation}\)
\(\begin{equation} =\lim _{h \rightarrow 0}\left(\frac{1+h^{2}-2 h-6+6 h+13-8}{-4 h}\right) \end{equation}\)
\(\begin{equation} =\lim _{h \rightarrow 0}\left(\frac{h^{2}+4 h}{-4 h}\right)=-1 \end{equation}\)
(iii) (c) : Since, R.H.D. at x = 3 is 1 and L.H.D. at x = 3 is-1
\(\therefore\) f(x) is non-differentiable at x = 3.
(iv) (d)
(v) (c) : From above, we have
\(\begin{equation} f^{\prime}(x)=\frac{x}{2}-\frac{3}{2}, x<1 \end{equation}\)
\(\begin{equation} \therefore f^{\prime}(-1)=\frac{-1}{2}-\frac{3}{2}=-2 \end{equation}\)
-
(i) (a) : f(3) = 4
\(\begin{equation} \lim _{x \rightarrow 3} f(x)=\lim _{x \rightarrow 3} \frac{x^{2}-9}{x-3}=\lim _{x \rightarrow 3} \frac{(x+3)(x-3)}{(x-3)} \end{equation}\)
\(\begin{equation} =\lim _{x \rightarrow 3}(x+3)=6 \because \lim _{x \rightarrow 3} f(x) \neq f(3) \end{equation}\)
\(\therefore\) f(x) has removable discontinuity at x = 3.
(ii) (c) : \(\begin{equation} \lim _{x \rightarrow 4^{-}} f(x)=\lim _{x \rightarrow 4}(x+2)=4+2=6 \end{equation}\)
\(\begin{equation} \lim _{x \rightarrow 4^{+}} f(x)=\lim _{x \rightarrow 4}(x+4)=4+4=8 \end{equation}\)
\(\begin{equation} \therefore \quad \lim _{x \rightarrow 4^{-}} f(x) \neq \lim _{x \rightarrow 4^{+}} f(x) \end{equation}\)
\(\begin{equation} \therefore f(x) \end{equation}\) has an irremovable discontinuity at x = 4.
(iii) (a) : \(\begin{equation} \lim _{x \rightarrow 2} f(x)=\lim _{x \rightarrow 2} \frac{\left(x^{-4}-4\right)}{(x-2)}=\lim _{x \rightarrow 2}(x+2)=4 \end{equation}\)
\(\begin{equation} \therefore f(x) \end{equation}\) has removable discontinuity at x = 2.
(iv) (c) : f(0)=2
\(\begin{equation} \lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0} \frac{x+x}{x}=2 \end{equation}\)
\(\begin{equation} \lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0} \frac{x-x}{x}=0 \end{equation}\)
\(\begin{equation} \because \lim _{x \rightarrow 0^{-}} f(x) \neq \lim _{x \rightarrow 0^{+}} f(x) \end{equation}\)
\(\begin{equation} \therefore f(x) \end{equation}\) has an irremovable discontinuity at x = 0.
(v) (d) : f(0) = 7
\(\begin{equation} \lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} \frac{e^{x}-1}{\log (1+2 x)}=\lim _{x \rightarrow 0} \frac{\frac{\left(\frac{e^{x}-1}{x}\right)}{\log (1+2 x)}{2 x} \cdot 2}=\frac{1}{2} \end{equation}\)
\(\begin{equation} \because \ \lim _{x \rightarrow 0} f(x) \neq f(0) \end{equation}\)
\(\begin{equation} \therefore f(x) \end{equation}\) has removable discontinuity at x = 0. -
L.H.L (at x = 0) = \(\begin{equation} \lim _{x \rightarrow 0} \frac{\sin (a+1) x+\sin x}{x}\left(\frac{0}{0} \text { form }\right) \end{equation}\)
Using L' Hospital rule, we get
L.H.L.(at x = 0)
\(\begin{equation} =\lim _{x \rightarrow 0}(a+1) \cos (a+1) x+\cos x=a+2 \end{equation}\)
R.H.L \(\begin{equation} \text { (at } x=0)=\lim _{x \rightarrow 0} \frac{\sqrt{x+b x^{2}}-\sqrt{x}}{b x^{3 / 2}}=\lim _{x \rightarrow 0} \frac{\sqrt{1+b x}-1}{b x} \end{equation}\)
\(\begin{equation} =\lim _{x \rightarrow 0} \frac{1}{\sqrt{1+b x}+1}=\frac{1}{2} \end{equation}\)
Since,f(x) is continuous at x = 0.
\(\therefore\) From (i) and (ii), we get
\(\begin{equation} a+2=c=\frac{1}{2} \Rightarrow a=-\frac{3}{2}, c=\frac{1}{2} \end{equation}\)
Also, value of b does not affect the continuity of f(x), so b can be any real number.
(i) (a)
(ii) (d)
(iii) (b)
(iv) (c) : \(\begin{equation} a+c=-\frac{3}{2}+\frac{1}{2}=-1 \end{equation}\)
(v) (d) : \(\begin{equation} c-a=\frac{1}{2}+\frac{3}{2}=2 \end{equation}\) -
(i) (a) : Let \(\begin{equation} y=\cos \sqrt{x} \end{equation}\)
\(\begin{equation} \therefore \quad \frac{d y}{d x}=\frac{d}{d x}(\cos \sqrt{x})=-\sin \sqrt{x} \cdot \frac{d}{d x}(\sqrt{x}) \end{equation}\)
\(\begin{equation} =-\sin \sqrt{x} \times \frac{1}{2 \sqrt{x}}=\frac{-\sin \sqrt{x}}{2 \sqrt{x}} \end{equation}\)
(ii) (a) : Let \(\begin{equation} y=7^{x+\frac{1}{x}} \quad \therefore \quad \frac{d y}{d x}=\frac{d}{d x}\left(7^{x+\frac{1}{x}}\right) \end{equation}\)
\(\begin{equation} =7^{x+\frac{1}{x}} \cdot \log 7 \cdot \frac{d}{d x}\left(x+\frac{1}{x}\right)=7^{x+\frac{1}{x}} \cdot \log 7 \cdot\left(1-\frac{1}{x^{2}}\right) \end{equation}\)
\(\begin{equation} =\left(\frac{x^{2}-1}{x^{2}}\right) \cdot 7^{x+\frac{1}{x}} \cdot \log 7 \end{equation}\)
(iii) (a) : Let \(\begin{equation} y=\sqrt{\frac{1-\cos x}{1+\cos x}}=\sqrt{\frac{1-1+2 \sin ^{2} \frac{x}{2}}{2 \cos ^{2} \frac{x}{2}-1+1}}=\tan \left(\frac{x}{2}\right) \end{equation}\)
\(\begin{equation} \therefore \frac{d y}{d x}=\sec ^{2} \frac{x}{2} \cdot \frac{1}{2}=\frac{1}{2} \sec ^{2} \frac{x}{2} \end{equation}\)
(iv) (b) : Let \(\begin{equation} y=\frac{1}{b} \tan ^{-1}\left(\frac{x}{b}\right)+\frac{1}{a} \tan ^{-1}\left(\frac{x}{a}\right) \end{equation}\)
\(\begin{equation} \therefore \quad \frac{d y}{d x}=\frac{1}{b} \times \frac{1}{1+\frac{x^{2}}{b^{2}}} \times \frac{1}{b}+\frac{1}{a} \times \frac{1}{1+\frac{x^{2}}{a^{2}}} \times \frac{1}{a} \end{equation}\)
\(\begin{equation} =\frac{1}{b^{2}+x^{2}}+\frac{1}{a^{2}+x^{2}} \end{equation}\)
(v) (d) : Let \(\begin{equation} y=\sec ^{-1} x+\operatorname{cosec}^{-1} \frac{x}{\sqrt{x^{2}-1}} \end{equation}\)
Put \(\begin{equation} x=\sec \theta \Rightarrow \theta=\sec ^{-1} x \end{equation}\)
\(\begin{equation} \therefore \quad y=\sec ^{-1}(\sec \theta)+\operatorname{cosec}^{-1}\left(\frac{\sec \theta}{\sqrt{\sec ^{2} \theta-1}}\right) \end{equation}\)
\(\begin{equation} =\theta+\sin ^{-1}\left[\sqrt{1-\cos ^{2} \theta}\right] \end{equation}\)
\(\begin{equation} =\theta+\sin ^{-1}(\sin \theta)=\theta+\theta=2 \theta=2 \sec ^{-1} x \end{equation}\)
\(\begin{equation} \therefore \quad \frac{d y}{d x}=2 \frac{d}{d x}\left(\sec ^{-1} x\right)=2 \times \frac{1}{|x| \sqrt{x^{2}-1}}=\frac{2}{|x| \sqrt{x^{2}-1}} \end{equation}\) -
(i) (b) : x3 + x2y+ xy2+y3= 81
\(\begin{equation} \Rightarrow 3 x^{2}+x^{2} \frac{d y}{d x}+2 x y+2 x y \frac{d y}{d x}+y^{2}+3 y^{2} \frac{d y}{d x}=0 \end{equation}\)
\(\begin{equation} \Rightarrow \left(x^{2}+2 x y+3 y^{2}\right) \frac{d y}{d x}=-3 x^{2}-2 x y-y^{2} \end{equation}\)
\(\begin{equation} \Rightarrow \frac{d y}{d x}=\frac{-\left(3 x^{2}+2 x y+y^{2}\right)}{x^{2}+2 x y+3 y^{2}} \end{equation}\)
(ii) (c) : xy = ex-y⇒y log x = x - y
\(\begin{equation} \Rightarrow y \times \frac{1}{x}+\log x \cdot \frac{d y}{d x}=1-\frac{d y}{d x} \end{equation}\)
\(\begin{equation} \Rightarrow \frac{d y}{d x}[\log x+1]=1-\frac{y}{x} \Rightarrow \frac{d y}{d x}=\frac{x-y}{x[1+\log x]} \end{equation}\)
(iii) (d) : \(\begin{equation} e^{\sin y}=x y \Rightarrow \sin y=\log x+\log y \end{equation}\)
\(\begin{equation} \Rightarrow \cos y \frac{d y}{d x}=\frac{1}{x}+\frac{1}{y} \frac{d y}{d x} \Rightarrow \frac{d y}{d x}\left[\cos y-\frac{1}{y}\right]=\frac{1}{x} \end{equation}\)
\(\begin{equation} \Rightarrow \frac{d y}{d x}=\frac{y}{x(y \cos y-1)} \end{equation}\)
(iv) (d) : sin2x + cos2y = 1
\(\begin{equation} \Rightarrow \quad 2 \sin x \cos x+2 \cos y\left(-\sin y \frac{d y}{d x}\right)=0 \end{equation}\)
\(\begin{equation} \Rightarrow \frac{d y}{d x}=\frac{-\sin 2 x}{-\sin 2 y}=\frac{\sin 2 x}{\sin 2 y} \end{equation}\)
(v) (d) : \(\begin{equation} y=(\sqrt{x})^{\sqrt{x}} \quad \Rightarrow y=(\sqrt{x})^{y} \end{equation}\)
\(\begin{equation} \Rightarrow \log y=y(\log \sqrt{x}) \Rightarrow \log y=\frac{1}{2}(y \log x) \end{equation}\)
\(\begin{equation} \Rightarrow \frac{1}{y} \frac{d y}{d x}=\frac{1}{2}\left[y \times \frac{1}{x}+\log x\left(\frac{d y}{d x}\right)\right] \end{equation}\)
\(\begin{equation} \Rightarrow \frac{d y}{d x}\left\{\frac{1}{y}-\frac{1}{2} \log x\right\}=\frac{1}{2} \frac{y}{x} \end{equation}\)
\(\begin{equation} \Rightarrow \frac{d y}{d x}=\frac{y}{2 x} \times \frac{2 y}{(2-y \log x)}=\frac{y^{2}}{x(2-y \log x)} \end{equation}\)
Case Study Questions