12th Standard CBSE Maths Study material & Free Online Practice Tests - View and download Sample Question Papers with Solutions for Class 12 Session 2019 - 2020 CBSE

Maths Question Papers & Study Material

12th CBSE Mathematics Differential Equations Model Question Paper - by Shalini Sharma - Udaipur - View & Download

  • 1)

    Write the degree of the differential equation: \(5x{ \left( \frac { dy }{ dx } \right) }^{ 2 }-\frac { { d }^{ 2 }y }{ { dx }^{ 2 } } =0.\)

  • 2)

    Write the sum of the order and degree of the differential equation \(1+\left( \frac { dy }{ dx } \right) ^{ 4 }=7\left( \frac { { d }^{ 2 }y }{ { dx }^{ 2 } } \right) ^{ 3 }\)

  • 3)

    Write the degree of the differential equation \({ x }^{ 3 }\left( \frac { { d }^{ 2 }y }{ { dx }^{ 2 } } \right) ^{ 2 }+x\left( \frac { dy }{ dx } \right) ^{ 4 }=0\)

  • 4)

    Find the differential equation representing the family of curves \(V=\frac { A }{ r } +B\) , where A and B arbitrary constants.

  • 5)

    Find the integrating factor of the differential equation \(\left( \frac { { e }^{ -2\sqrt { x } } }{ \sqrt { x } } -\frac { y }{ \sqrt { x } } \right) \frac { dx }{ dy } =1\) .

12th Standard CBSE Mathematics Unit 8 Application of Integrals Model Question Paper - by Shalini Sharma - Udaipur - View & Download

  • 1)

    Find the area of the region by the curve \(y=\frac { 1 }{ x } \) , X-axis and between X = 1, X = 4.

  • 2)

    Find the area of the region bounded by the curve y2 = x and the lines x = 1 , x = 4 and the x -  axis.  

  • 3)

    The area between x = y2 and x = 4 is divided into two equal parts by the line x = a, find the value of a.

  • 4)

    Using integration, find the area of the triangular region whose sides have the equations:
    y = 2x + 1, y = 3x + 1and x = 4.

  • 5)

    Choose the correct answer
    Smaller area enclosed by the circle x2 + y2 = 4 and the line x + y = 2 is :
    (A) \(2(\pi -2)\)
    (B) \(\pi -2\)
    (C) \(2\pi -1\)
    (D) \(2(\pi +2)\)

12th Standard CBSE Mathematics Unit 7 Integrals Model Question Paper - by Shalini Sharma - Udaipur - View & Download

  • 1)

    Evaluate the integral: \(\int { {x^2\over1+x^3}dx. } \)

  • 2)

    Evaluate the integral: \(\int {(ax\ +\ b)^3}dx\)

  • 3)

    \(\int cos^2x\ cosec^2x\ dx.\)

  • 4)

    \(\int {x\over \sqrt {x+2}}dx.\)

  • 5)

    Given \(\int { { e }^{ x }(tanx+1)secxdx={ e }^{ x }f(x)+c } \). Write f(x) satisfying the above.

12th CBSE Mathematics Unit 6 Application of Derivatives Model Question Paper - by Shalini Sharma - Udaipur - View & Download

  • 1)

    The amount of pollution content added in air in a city due to X diesel vehicles is given by P(x)=0.005x3+0.02x2 +30x.Find the marginal increase   in pollution content when 3 diesel vehicles are added and write which value is indicated in the above question?

  • 2)

    For what value of m,The function f(x)=mx+c,is decreasing for x \(\epsilon \) R.

  • 3)

    Show that f(x)=(x-1) ex+1 is an increasing function for x > 0.

  • 4)

    For the function y=x3, if x=5 and \(\Delta \)x=0.01,find \(\Delta \)y

  • 5)

    f(x)=9x2+12x+2

12th CBSE Mathematics Unit 5 Continuity and Differentiability Important Question Paper - by Shalini Sharma - Udaipur - View & Download

  • 1)

    Examine the continuity of the function f (x)=\(\frac { 1 }{ x+3 } ,\quad x\quad \varepsilon \quad R\).

  • 2)

    Give an example of a function which is continuous at x=1, but not differentiable at x=1.

  • 3)

    State the points of discountinuity for the function \(f(x)= [x]\)  in \(-3 < x < 3.\)

  • 4)

    If y= sec-1 \(\left( \frac { \sqrt { x } +1 }{ \sqrt { x } -1 } \right) +\quad sin^{ -1 }\left( \frac { \sqrt { x } -1 }{ \sqrt { x } +1 } \right) ,\quad find\frac { dy }{ dx } .\)

  • 5)

    Differentiate the following w.r.t. x, or find \(\frac { dy }{ dx } \).

    \(y={ e }^{ x }+{ e }^{ { x }^{ 2 } }+{ e }^{ { x }^{ 3 } }+{ e }^{ { x }^{ 4 } }+{ e }^{ { x }^{ 5 } }.\)

12th CBSE Mathematics Unit 4 Determinants Important Question Paper - by Shalini Sharma - Udaipur - View & Download

  • 1)

    If A is a square matrix of order 3 and |3A|=k|A|, then write the value of k.

  • 2)

    What positive value of x makes the following pair of determinants equal?

    \(\begin{vmatrix} 2x & 3 \\ 5 & x \end{vmatrix},\begin{vmatrix} 16 & 3 \\ 5 & 2 \end{vmatrix}\)

  • 3)

    Write the adjoint of the following matrix \(\begin{bmatrix} 2 & -1 \\ 4 & 3 \end{bmatrix}\)

  • 4)

    Evaluate \(\begin{vmatrix} cos15^{ o } & sin15^{ o } \\ sin75^{ o } & cos75^{ o } \end{vmatrix}\)

  • 5)

    Given determinant \(\begin{vmatrix} a_{ 11 } & a_{ 12 } & a_{ 13 } \\ a_{ 21 } & a_{ 22 } & a_{ 23 } \\ a_{ 31 } & a_{ 32 } & a_{ 33 } \end{vmatrix}\).Find the value of a11A21+a12A22+a13A23, where Aij is cofactor of element aij

12th Standard CBSE Mathematics Unit 3 Matrices Important Question Paper - by Shalini Sharma - Udaipur - View & Download

  • 1)

    If \(\left[ \begin{matrix} x & +3y & y \\ 7 & -x & 4 \end{matrix} \right] \)=\(\begin{bmatrix} 4 & -1 \\ 0 & 4 \end{bmatrix}\), find the values of x and y.

  • 2)

    If matrix A=\([\begin{matrix} 1 & 2 & 3 \end{matrix}]\) write AA' , where A' is the transpose of matrix A.

  • 3)

    If \(\left[ \begin{matrix} y & +2x & 5 \\ & -x & 3 \end{matrix} \right] =\begin{bmatrix} 7 & 5 \\ -2 & 3 \end{bmatrix}\), find the value of y.

  • 4)

    If \(A=\left[ { a }_{ ij } \right] =\left[ \begin{matrix} 2 & 3 & -5 \\ 1 & 4 & 9 \\ 0 & 7 & -2 \end{matrix} \right] andb=\left[ { b }_{ ij } \right] =\left[ \begin{matrix} 2 & 1 & -1 \\ -3 & 4 & 4 \\ 1 & 5 & 2 \end{matrix} \right] ,then\quad find\quad { a }_{ 22 }+{ b }_{ 21 }.\)

  • 5)

    If \(\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}\begin{bmatrix} 3 & 1 \\ 2 & 5 \end{bmatrix}=\begin{bmatrix} 7 & 11 \\ k & 23 \end{bmatrix}\), find the value of k.

12th CBSE Maths Unit 2 Inverse Trigonometric Functions Important Question Paper - by Shalini Sharma - Udaipur - View & Download

  • 1)

    Evaluate  \(sin\left[ \frac { \pi }{ 3 } -{ sin }^{ -1 }\left( -\frac { 1 }{ 2 } \right) \right] \) .

  • 2)

    Using principal value, evaluate the following:  \({ cos }^{ -1 }\left( cos\frac { 2\pi }{ 3 } \right) +{ sin }^{ -1 }\left( sin\frac { 2\pi }{ 3 } \right) \) 

  • 3)

    Show that \({ sin }^{ -1 }\left( 2X\sqrt { 1-{ X }^{ 2 } } \right) =2{ sin }^{ -1 }X\) 

  • 4)

    Solve for X, \(\quad { tan }^{ -1 }\frac { 1-X }{ 1+X } =\frac { 1 }{ 2 } { tan }^{ -1 }X,\quad X>0.\)

  • 5)

    Write the principal values of the following: \({ cos }^{ -1 }\left( cos\frac { 7\pi }{ 6 } \right) \)

CBSE 12th Standard Mathematics Unit 1 Important Questions - by Shalini Sharma - Udaipur - View & Download

  • 1)

    If f(X)=X+7 and g(X)=X-7, \(X\in R,\) find fog(7). ?

  • 2)

    If the binary operation * on the set of integers Z is defined by a*b=a+3bthen find the value of 2*4.

  • 3)

    Let * be a binary operation on N given by a*b=HCF(a,b), \(a,b\in N\). Write the value of 22*4.

  • 4)

    If the binary operation * defined on Q is defined as a*b=2a+b-ab, for all \(a,b\in Q,\) find the value of 3*4.

  • 5)

    If f:\(R\to R\) be defined by \(f(X)=(3-X^3)^{1\over3}\) then find fof(X).

Maths CBSE 12 Class Revision Test paper - by Bala - View & Download

  • 1)

    For the set A={1,2,3} define a relation R in the set A is follows:

    R={(1,1).(2,2),(3,3),(1,3)}. Write the ordered pairs to be added to R to make it the smallest equivalence relation.

  • 2)

    If matrix A=\([\begin{matrix} 1 & 2 & 3 \end{matrix}]\) write AA' , where A' is the transpose of matrix A.

  • 3)

    Evaluate : \(\int _{ 0 }^{ \frac { \pi }{ 2 } }{ { e }^{ x }Isinx+cosx) } dx\)

  • 4)

    Find \(\lambda\), if the vectors
    \(\overrightarrow a=\overset\wedge i+3\overset\wedge j+\overset\wedge k,\overrightarrow b=2\overset\wedge i-\overset\wedge j-\overset\wedge k\) and \(\overrightarrow c=\lambda \overset\wedge j+3\overset\wedge k\) are coplanar.

  • 5)

    How many equivalence relations on the set {1,2, 3} containing (I, 2) and (2, 1) are there in all ? Justify your answer.

CBSE Maths First Full Test Class 12 - by Bala - View & Download

  • 1)

    Let * be a binary operation on N given by a * b = LCM(a,b) for all a,b \(\in \) N. Find 5*7

  • 2)

    Use elementary column operation \({ C }_{ 2 }\rightarrow { C }_{ 2 }+2{ C }_{ 1 }\) in the following matrix equation :
    \(\left( \begin{matrix} 4 & 2 \\ 3 & 3 \end{matrix} \right) =\left( \begin{matrix} 1 & 2 \\ 0 & 3 \end{matrix} \right) \left( \begin{matrix} 2 & 0 \\ 1 & 1 \end{matrix} \right) \)

  • 3)

    Evaluate the integral: \(\int {(1-x)\sqrt x\ dx}\)

  • 4)

    Find \(\lambda\) when the projection of \(\overrightarrow { a } =\lambda \hat { i } +\hat { j } +4\hat { k } \quad on\quad \overrightarrow { b } =2\hat { i } +6\hat { j } +3\hat { k } \) is 4 units.

  • 5)

    Define Reflexive.Give one example.

CBSE Class 12 Mathematics Important Question Paper - by Bala - View & Download

  • 1)

    Show that the relation R:{1,2,3}\(\rightarrow\){1,2,3} given by R={(1,1),(2,2),(3,3),(1,2),(2,3)} is reflexive but neither symmetric nor transitive.

  • 2)

    If \(A=\begin{bmatrix} cos\alpha - & sin\alpha \\ sin\alpha & cos\alpha \end{bmatrix}\), then for what value of \(\alpha \), A is an identify matrix?

  • 3)

    Evaluate the integral: \(\int {(1-x)\sqrt x\ dx}\)

  • 4)

    Write the value of the area of the parallelogram determined by the vectors \(2\hat { i } \quad and\quad 3\hat { j } \)

  • 5)

    Let f and g be real function be \(f(x)=\sqrt { x+4 } ,x\ge 4\) find the function fg, \(\frac { f }{ g } \)
     

Vector Algebra Important Questions CBSE 12th Mathematics - by Bala - View & Download

  • 1)

    Find a unit vector in the direction of \(\overrightarrow { a } =3\overrightarrow { i } -2\overrightarrow { j } +6\overrightarrow { k } \)

  • 2)

    If p(1,5,4) and Q(4,1,-2) find the direction ratios of \(\overrightarrow { PQ } \)

  • 3)

    Write the direction cosines of the vector \(-2\hat { i } +\hat { j } -5\hat { k } \)

  • 4)

    If \(\overrightarrow { a } \) is a unit vector and \((\overrightarrow { x } -\overrightarrow { a } ).(\overrightarrow { x } +\overrightarrow { a } )=8\quad find\quad \left| \overrightarrow { x } \right| \)

  • 5)

    Find the sum of the vectors \(\overset\rightarrow a=\overset\wedge i-2\overset\wedge j+\overset\wedge k,\overset\rightarrow b=-2\overset\wedge i+4\overset\wedge j+5\overset\wedge k,\overset\rightarrow c=\overset\wedge i-6\overset\wedge j-7\overset\wedge k.\)

12th CBSE Mathematics Three Dimensional Geometry Important Question Paper - by Bala - View & Download

  • 1)

    Find the direction ratios of the line \(\frac { x+2 }{ 1 } =\frac { 2y-1 }{ 3 } =\frac { 3-z }{ 5 } .\)

  • 2)

    Find the angle between the line \(\vec { r } =(2\hat { i } -\hat { j } +3\hat { k } )+\lambda (3\hat { i } -\hat { j } +2\hat { k } )\)  and the plane \(\vec { r } .(\hat { i } +\hat { j } +\hat { k } )=3.\)

  • 3)

    What is the distance of the point (p,q,r) from the x-axis?

  • 4)

    Find the distance of a point (2, 5, - 3) from the plane \(\overset { \rightarrow }{ r } (6\hat { i } +3\hat { j+6\hat { 2k } )=4 } \) 

  • 5)

    Find the length of the perpendicular drawrt from the origin to the plane 2x - 3y + 6z + 21 = 0

12th CBSE Mathematics Linear Programming Model Question Paper - by Bala - View & Download

  • 1)

    The objective function is maximum or minimum, which lies on the boundary of the feasible region.

  • 2)

    Solve the following problem graphically:
    Minimise and Maximise Z=3x+9y subject to the constraints:
    \(x+3y\le 60,x+y\ge 10,x\le y,x\ge 0,y\ge 0.\)

  • 3)

    Maximise Z=3x+2y
    subject to \(x+2y\le 10,3x+y\le 15,x,y\ge 0.\)

  • 4)

    Reshma wishes to mix two types of food P and Q in such a way that the vitamin contents of the mixture contain at least 8 units of vitamin A and 11 units of vitamin B. Food P costs RS. 60/kg and Food Q costs RS. 80/kg. Food P contains 3 units/kg of Vitamin A AND 4 units/kg of vitamin B. Food Q contains 5 units/kg Vitamin A and 2 units/kg of vitamin B. Determine the minimum cost of the mixture.

  • 5)

    A farmer mixes two brands P and Q of cattle feed. Brand P, costing RS.250 per bag, contains 3 units of nutritional element A, 2.5 units of element B and 2 units of vitamin C. Brand Q costing RS.200 per bag contains 1.5 units of nutritional element A, 11.25 units of element B, and 3 units of element C. The minimum requirements of nutrients A,B and C are 18 units, 45 units and 24 units respectively. Determine the number of bags of each brand which should be mixed in order to produce a mixture having a minimum cost per bag? What is the minimum cost of the mixture per bag?

12th CBSE Mathematics Probability Important Question Paper - by Bala - View & Download

  • 1)

    If P(A)=0.4, P(B)=p and \(P(A\cup B)=0.7\) find the value of p, if A and B are independent events.

  • 2)

    Given P(A)=0.4, P(B)=0.7 and P(B/A)=0.6, Find \(P(A\cup B)\)

  • 3)

    A bag contain 2 red, 6 black and 8 green balls. A ball is drawn at random from the bag. Find the probabilty:
    (a) a red ball
    (b) a black ball
    (c) a green ball
    (d) a non-red ball

  • 4)

    If P(E) =\(\frac { 6 }{ 11 } \), P(F) =\(\frac { 5 }{ 11 } \) and P(E\(\cup\)F)=\(\frac { 7 }{ 11 } \) then find (a) P(E/F), (b) P(F/E)

  • 5)

    If P(F) = 0.35 and P(E\(\cup\)F) = 0.85 and E and F are independent events. Find P(E).

12th Standard Mathematics Revision Model Question Paper 1 - by Bala - View & Download

  • 1)

    State the reason for the relation R in the set {1,2,3} given by R={(1,2),(2,1),} not to be transitive.

  • 2)

    Find the principal value of \({ sin }^{ -1 }\left( \frac { \sqrt { 3 } }{ 2 } \right) \) 

  • 3)

    If \({ X }_{ m\times 3 }{ Y }_{ p\times 4 }={ Z }_{ 2\times b }\), for three matrices X,Y and Z, find the values of m,p and b.

  • 4)

    \(\int {x^2-1\over x^2+1}dx.\)

  • 5)

    Let f:\(X\rightarrow Y\) be a function Define a relation R on X given be R=[(a,b) ; (f(b)] Show that R is an equivalence relation ?

12th Standard CBSE Mathematics Term Test Question Paper - by Bala - View & Download

  • 1)

    If the binary operation * on the set of integers Z is defined by a*b=a+3bthen find the value of 2*4.

  • 2)

    Let * be a binary operation on N given by a*b=HCF(a,b), \(a,b\in N\). Write the value of 22*4.

  • 3)

    If the binary operation * defined on Q is defined as a*b=2a+b-ab, for all \(a,b\in Q,\) find the value of 3*4.

  • 4)

    Let f:\(R\rightarrow R\) is defined by f(x)=|x|. Is function f onto? Give reasons.

  • 5)

    Let R be a relation in the set of natural numbers N defined by R={(a,b)\(\in\)NXN;a

Probability - Important Questions Model Paper In 12th Maths - by Bala - View & Download

  • 1)

    Given P(A)=\(1\over2\),P(B)=\(1\over3\) and \(P(A\cap B)={1\over6}\)  Are the events A and B independent?

  • 2)

    Given P(A)=0.2, P(B)=0.3 and \(P(A\cap B)=0.3\) Find P(A/B)

  • 3)

    Given P(A)=0.4, P(B)=0.7 and P(B/A)=0.6, Find \(P(A\cup B)\)

  • 4)

    Events E and F are given to be independent. Find P(F) if it is given that P(E)=0.60 and P(E\(\cap\)F)=0.35

  • 5)

    Does the following represent a probability distribution? Give reasons.

    X 0 1 2
    P(x) 1/3 1/3 1/6

Linear Programming - Important Questions Model Question Paper 1 In 12th Maths - by Bala - View & Download

  • 1)

    Solve the following linear programming problem graphically:
    Maximise Z=4x+y subject to the constraints:
    \(\\ x+y\le 50,3x+y\le 90,x\ge 0,y\ge 0.\)

  • 2)

    Solve the following problem graphically:
    Minimise and Maximise Z=3x+9y subject to the constraints:
    \(x+3y\le 60,x+y\ge 10,x\le y,x\ge 0,y\ge 0.\)

  • 3)

    Determine the minimum value of Z=3x+2y (if any), if the feasible region for an LLP is shown in the figure:

  • 4)

    Solve the following LLP graphically:
    Maximise Z=2x+3y, subject to \(x+y\le 4,x\ge 0,y\ge 0.\)

  • 5)

    Minimize and Maximize Z=5x+2y, subject to the following constraints:
    \(x-2y\le 2,3x+2y\le 12,-3x+2y\le 3,x\ge 0,y\ge 0.\)

Three Dimensional Geometry - Important Questions Model Question Paper 1 In 12th Maths - by Bala - View & Download

  • 1)

    Find the distance of the point (2,3,4) from the plane \(\overrightarrow { r } .(3\acute { i } -6\acute { j } +2\acute { k } )=-11\).

  • 2)

    Write the Cartesian equation of the following line given in vector form:

    \(\overrightarrow { r } =2\hat { i } +\hat { j } +4\hat { k } +\lambda (\hat { i } +\hat { j } -\hat { k } )\)

  • 3)

    Write the vector equation of a line whose Cartesian equation is \(\frac { x+3 }{ 2 } =\frac { y-1 }{ 4 } =\frac { z+1 }{ 5 } \).

  • 4)

    Find the vector normal to the plane \(\vec { r } .(3\hat { i } -7\hat { k } )+5=0\).

  • 5)

    Find the coordinates of a point, where the line \(\frac { x+2 }{ 1 } =\frac { y-5 }{ 3 } =\frac { z+1 }{ 5 } \) cuts yz-plane.

Vector Algebra - Important Questions Model Question Paper 1 In 12th Maths - by Bala - View & Download

  • 1)

    Find the angle between the vectors \(\overrightarrow { a } =\overrightarrow { i } -\overrightarrow { j } +\overrightarrow { k } and\quad \overrightarrow { b } =\overrightarrow { i } +\overrightarrow { j } -\overrightarrow { k } \)

  • 2)

    Find a vector in the direction of \(\overrightarrow { a } =\overrightarrow { i } -2\overrightarrow { j } \) whose magnitude is 7.

  • 3)

    Vectors \(\overrightarrow { a } \quad and\quad \overrightarrow { b } \) are such that \(\left| \overrightarrow { a } \right| =\sqrt { 3 } ,\left| \overrightarrow { b } \right| =\frac { 2 }{ 3 } and\quad (\overrightarrow { a } \times \overrightarrow { b } )\) is a unit vector. write the angle between \(\overrightarrow { a } \quad and\quad \overrightarrow { b } \)?

  • 4)

    If \(\overrightarrow { a } =x\hat { i } +2\hat { j } -z\hat { k } \quad and\quad \overrightarrow { b } =3\hat { i } -y\hat { j } +\hat { k } \) are two equal vectors then write the value of x+y+z.

  • 5)

    If \(\left| \overrightarrow { a } \right| =3\) interpret the following:

    (i)2\(\overrightarrow { a } \)   (ii)-5\(\overrightarrow { a } \)

Differential Equations - Important Questions Model Question Paper 1 In 12th Maths - by Bala - View & Download

  • 1)

    What is the degree of the following differential equation?

    \({ { 5x\left( \frac { dy }{ dx } \right) } }^{ 2 }-\frac { { d }^{ 2 }y }{ { dx }^{ 2 } } -6y=logx\)

  • 2)

    Write the order and degree of the differential equation \((\frac{{d}^{2}y}{{dx}^{2}})^{3}\) -5\(\frac{dy}{dx}\)+6=0.

  • 3)

    Find the differential equation of the family of lines passing through the origin.

  • 4)

    Write the differential equation representing the curve y2 = 4ax, where a is an arbitrary constant.

  • 5)

    Find the integrating factor of the differential equation \(\left( \frac { { e }^{ -2\sqrt { x } } }{ \sqrt { x } } -\frac { y }{ \sqrt { x } } \right) \frac { dx }{ dy } =1\) .

Application Of Integrals - Important Questions Model Question Paper 1 In 12th Maths - by Bala - View & Download

  • 1)

    Find the area of the region bounded by y2 = 9x, x = 2, x = 4 and the x - axis in the first quadrant.

  • 2)

    Find the area of the region in the first quadrant enclosed by x - axis and \(x=\sqrt { 3 } y\) by the circle \({ x }^{ 2 }+{ y }^{ 2 }=4\).

  • 3)

    The area between x = y2 and x = 4 is divided into two equal parts by the line x = a, find the value of a.

  • 4)

    Find the area bounded by the curve x2 = 4y and the line x = 4y - 2.

  • 5)

    Choose the correct answer:
    Area lying between the curves y2 = 4x and y = 2x is :
    (A) \(\frac { 2 }{ 3 } \)
    (B) \(\frac { 1 }{ 3 } \)
    (C) \(\frac { 1 }{ 4 } \)
    (D) \(\frac { 3 }{ 4 } \)

Integrals - Important Questions Model Question Paper 1 In 12th Maths - by Bala - View & Download

  • 1)

    Evaluate the integral: \(\int { {x^2\over1+x^3}dx. } \)

  • 2)

    \(\int {1+tan\ x\over 1-tan\ x}dx\).

  • 3)

    \(\int {dx\over x\ cos^2 (1+log\ x)}\).

  • 4)

    \(\int {x^2-1\over x^2+1}dx.\)

  • 5)

    \(\int {e^x\over 1+e^x}dx.\)

Application Of Derivatives - Important Questions Model Question Paper 1 In 12th Maths - by Bala - View & Download

  • 1)

    The amount of pollution content added in air in a city due to X diesel vehicles is given by P(x)=0.005x3+0.02x2 +30x.Find the marginal increase   in pollution content when 3 diesel vehicles are added and write which value is indicated in the above question?

  • 2)

    The money to be spent for the welfare of the employees of a firm is proportional to the rate of change of its total revenue(marginal revenue).If the total revenue(in rupees)received from the sale of x units of a product is given by R9x)=3x2+36+5,find the marginal revenue,when=5,and write which value does the question indicate?

  • 3)

    The total cost C(x) associated with provision of free mid-day meals to x students of a school in primary classes is given by

    C(x)=0.005x3-0.02x2+30x+50

    If the marginal cost is given by rate of change \(dC\over dX\)of total cost,write the marginal cost of food for 300students.What value is shown here?

  • 4)

    The total revenue received from the sale of x souvenirs in connection with 'PEACE DAY'is given by R(x)=3x2+40x+10.Find the marginal revenue when 100souvenirs were sold.What is the importance of celebrating Peace Day in our life?

  • 5)

    A balloon which always remains spherical has a variable diameter \({3\over2}(2x+1)\).Find the rate of change of its volume with respect to x.

Continuity And Differentiability - Important Questions Model Paper In 12th Maths - by Bala - View & Download

  • 1)

    Examine the continuity of the function f (x) = x2+5 at x=-1

  • 2)

    Examine the continuity of the function f (x)=\(\frac { 1 }{ x+3 } ,\quad x\quad \varepsilon \quad R\).

  • 3)

    Give an example of a function which is continuous at x=1, but not differentiable at x=1.

  • 4)

    State the points of discountinuity for the function \(f(x)= [x]\)  in \(-3 < x < 3.\)

  • 5)

    Show that the function f (x)= \(\begin{cases} { x }^{ 3 }+3\quad ,\quad if\quad x\neq 0 \\ 1\quad \quad \quad ,\quad if\quad x=0 \end{cases}\) is not continuous at x=0. 

Determinants - Important Questions Model Question Paper 1 In 12th Maths - by Bala - View & Download

  • 1)

    Find the cofactor of a12 in the following.\(\begin{vmatrix} 2 & -3 & 5 \\ 6 & 0 & 4 \\ 1 & 5 & -7 \end{vmatrix}\)

  • 2)

    Write the adjoint of the following matrix \(\begin{bmatrix} 2 & -1 \\ 4 & 3 \end{bmatrix}\)

  • 3)

    If \(\begin{vmatrix} x+1 & x-1 \\ x-3 & x+2 \end{vmatrix}=\begin{vmatrix} 4 & -1 \\ 1 & 3 \end{vmatrix}\)then write the value of x.

  • 4)

    A is a non-singular matrix of order 3 and |A|=-4. Find |adj A|

  • 5)

    In the interval  \(\frac { \pi }{ 2 } , find the value of x for which that matrix \(\left[ \begin{matrix} 2sinx \\ 1 \end{matrix}\begin{matrix} 3 \\ 2sinx \end{matrix} \right] \) is singular.

Matrices - Important Questions Model Question Paper 1 In 12th Maths - by Bala - View & Download

  • 1)

    If \(\left[ \begin{matrix} x & +3y & y \\ 7 & -x & 4 \end{matrix} \right] \)=\(\begin{bmatrix} 4 & -1 \\ 0 & 4 \end{bmatrix}\), find the values of x and y.

  • 2)

    Write the value of x-y+z from the following equation :

    \(\left[ \begin{matrix} x+y+z \\ x+z \\ y+z \end{matrix} \right] =\left[ \begin{matrix} 9 \\ 5 \\ 7 \end{matrix} \right] \)

  • 3)

    If \({ A }^{ T }=\left[ \begin{matrix} 3 & 4 \\ -1 & 2 \\ 0 & 1 \end{matrix} \right] \)and \(B=\left[ \begin{matrix} -1 & 2 & 1 \\ 1 & 2 & 3 \end{matrix} \right] \), then find \({ A }^{ T }-{ B }^{ T }\).

  • 4)

    If matrix \(A=\begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}\) and \({ A }^{ 2 }=kA\), then write the value of k.

  • 5)

    A matrix has 18 elements. Write the possible orders of a matrix

12th Maths Model Question Paper 5 - by Bala - View & Download

  • 1)

    Show that \({ sin }^{ -1 }\left( 2X\sqrt { 1-{ X }^{ 2 } } \right) =2{ sin }^{ -1 }X\) 

  • 2)

    Solve for X, \(\quad { tan }^{ -1 }\frac { 1-X }{ 1+X } =\frac { 1 }{ 2 } { tan }^{ -1 }X,\quad X>0.\)

  • 3)

    Write the principal values of the following: sec-1(-2).

  • 4)

    Write the principal values of the following: \({ cot }^{ -1 }\left( -\sqrt { 3 } \right) \)

  • 5)

    Find the principal value of \({ tan }^{ -1 }\sqrt { 3 } -{ sec }^{ -1 }\left( -2 \right) \)

12th Maths Model Question Paper 1 - by Bala - View & Download

  • 1)

    If the binary operation * on the set of integers Z is defined by a*b=a+3bthen find the value of 2*4.

  • 2)

    Let * be a binary operation on N given by a*b=HCF(a,b), \(a,b\in N\). Write the value of 22*4.

  • 3)

    If f:\(R\to R\) and g:\(R\to R\)are given by f(X)=sin x and g(x)=5x2 find gof(x).

  • 4)

    State the reason for the relation R in the set {1,2,3} given by R={(1,2),(2,1),} not to be transitive.

  • 5)

    Let f:\(R\rightarrow R\) is defined by f(x)=x2. Is f one-one?

Inverse Trigonometric Functions - Important Four Marks Questions Model Question Paper In 12th Maths - by AJAY KAKKAR - View & Download

  • 1)

    Write in the simplest form: \(({ tan }^{ -1 }\left[ \frac { \sqrt { 1+sin\quad x } +{ \sqrt { 1-sin\quad x } }\quad }{ \sqrt { 1+sin\quad x } +{ \sqrt { 1-sin\quad x } } } \right] ,0<x<\frac { \pi }{ 2 } \)

  • 2)

    Solve for X, 2tan-1(sinX)=tan-1(2secX),\(X\neq \frac { \pi }{ 2 } \)

  • 3)

    Solve the following equations:

    \({ cot }^{ -1 }X-{ cot }^{ -1 }\left( X+2 \right) =\frac { \pi }{ 12 } \)

  • 4)

    Solve the following equations:

    \({ tan }^{ -1 }\frac { X+1 }{ X-1 } +{ tan }^{ -1 }\frac { X-1 }{ X } ={ tan }^{ -1 }\left( -7 \right) \)

  • 5)

    Solve the following equations in term of  \(\beta\)\({ tan }^{ -1 }\left[ \frac { \sqrt { 1+{ x }^{ 2 } } -\sqrt { 1-{ x }^{ 2 } } }{ \sqrt { 1+{ x }^{ 2 } } +\sqrt { 1-{ x }^{ 2 } } } \right] =\beta \)

Inverse Trigonometric Functions - Important Two Marks Questions Model Question Paper In 12th Maths - by AJAY KAKKAR - View & Download

  • 1)

    Write in the simplest form : \({ tan }^{ -1 }\left[ \frac { cos\quad x }{ 1+sin\quad x } \right] ,x\left[ -\frac { \pi }{ 2 } ,\frac { \pi }{ 2 } \right] \)

  • 2)

    Show that : \({ tan }^{ -1 }\frac { 3 }{ 4 } +{ tan }^{ -1 }\frac { 3 }{ 5 } -{ tan }^{ -1 }\frac { 8 }{ 19 } =\frac { \pi }{ 4 } \)

  • 3)

    Show that \({ tan }^{ -1 }\frac { x }{ y } -{ tan }^{ -1 }\frac { x-y }{ x+y } =\frac { \pi }{ 4 } \)

  • 4)

    Show that \({ sin }^{ -1 }\frac { 5 }{ 13 } +{ cos }^{ -1 }\frac { 3 }{ 5 } ={ tan }^{ -1 }\frac { 63 }{ 16 } \)

  • 5)

    Evaluate : \(4 { tan }^{ -1 }\frac { 1 }{ 5 } \)

Continuity And Differentiability - Important Two Marks Questions Model Question Paper In 12th Maths - by AJAY KAKKAR - View & Download

  • 1)

    Show that the function f (x)= \(\begin{cases} { x }^{ 3 }+3\quad ,\quad if\quad x\neq 0 \\ 1\quad \quad \quad ,\quad if\quad x=0 \end{cases}\) is not continuous at x=0. 

  • 2)

    Check the continuity of the function f given by:
    f(x)=2x+3 at x=1.

  • 3)

    Examine whether the function f given by:
    f(x)=\({ x }^{ 2 }\) is continuous at x=0.

  • 4)

    Discuss the continuity of the function f given by:
    \(f(x)=\left| x \right| at\quad x=0.\)

  • 5)

    Show that the function f given by:
    \(f(x)=\begin{cases} { x }^{ 3 }+3,\quad \quad \quad if\quad x\neq 0 \\ 1,\quad \quad \quad \quad \quad \quad if\quad x=0 \end{cases}\)
    is not continuous at x=0.

12th Maths Model Question Paper 3 - by ADMIN-ENGLISH - View & Download

12th Maths Model Question Paper 4 - by ADMIN-ENGLISH - View & Download

12th Maths Model Question Paper 2 - by ADMIN-ENGLISH - View & Download

Vector Algebra - Important Questions Model Question Paper 2 In 12th Maths - by ADMIN-ENGLISH - View & Download

Three Dimensional Geometry - Important Questions Model Question Paper 2 In 12th Maths - by ADMIN-ENGLISH - View & Download

Relations And Functions - Important Questions Model Question Paper In 12th Maths - by ADMIN-ENGLISH - View & Download

Probability - Important Questions Model Question Paper In 12th Maths - by ADMIN-ENGLISH - View & Download

Matrices - Important Questions Model Question Paper 2 In 12th Maths - by ADMIN-ENGLISH - View & Download

Linear Programming - Important Questions Model Question Paper 2 In 12th Maths - by ADMIN-ENGLISH - View & Download

Inverse Trigonometric Functions - Important Questions Model Question Paper In 12th Maths - by ADMIN-ENGLISH - View & Download

Integrals - Important Questions Model Question Paper 2 In 12th Maths - by ADMIN-ENGLISH - View & Download

Differential Equations - Important Questions Model Question Paper 2 In 12th Maths - by ADMIN-ENGLISH - View & Download

Determinants - Important Questions Model Question Paper 2 In 12th Maths - by ADMIN-ENGLISH - View & Download

Continuity And Differentiability - Important Questions Model Question Paper In 12th Maths - by ADMIN-ENGLISH - View & Download

Application Of Integrals - Important Questions Model Question Paper 2 In 12th Maths - by ADMIN-ENGLISH - View & Download

Application Of Derivatives - Important Questions Model Question Paper 2 In 12th Maths - by ADMIN-ENGLISH - View & Download

View all

CBSE Education Study Materials

Revision Plan to score full Marks in CBSE Class 12 Mathematics Bala

One should have a highly positive mindset and confident approach for scoring a good percentage. S...

Tips to crack CBSE Class 12 Mathematics with 100/100 Bala

Mathematics is the most important subject for the engineering aspirants who look to pursue career...

Tips to crack CBSE Class 12 Mathematics with 100/100 Bala

Mathematics is the most important subject for the engineering aspirants who look to pursue career...

View all Question papers

CBSEStudy Material - Sample Question Papers with Solutions for Class 12 Session 2019 - 2020

Latest Sample Question Papers & Study Material for class 12 session 2019 - 2020 for Subjects Biology, Physics, Chemistry, Accountancy, Business Studies, Economics, Computer Science, Introductory Microeconomics and Macroeconomics in PDF form to free download for practice. Download QB365 Free Mobile app & get practice question papers.

More than 1000+ CBSE Syllabus Sample Question Papers & Study Material are based on actual Board question papers which help students to get an idea about the type of questions that will be asked in Class 12 Final Board Public examinations. All the Sample Papers are adhere to CBSE guidelines and its marking scheme , Question Papers & Study Material are prepared and posted by our faculty experts , teachers , tuition teachers from various schools in Tamilnadu.

Hello Students, if you like our sample question papers & study materials , please share these with your friends and classmates.

Related Tags