12th Standard Maths Study material & Free Online Practice Tests - View and download Sample Question Papers with Solutions for Class 12 Session 2019 - 2020 TN Stateboard

Maths Question Papers

12th Maths Quarterly Exam Question Paper 2019 - by Satyadevi - Tiruchirappalli - View & Download

12th Maths - Term 1 Model Question Paper - by Meera - Namakkal - View & Download

  • 1)

    If |adj(adj A)| = |A|9, then the order of the square matrix A is

  • 2)

    The number of solutions of the system of equations 2x+y = 4, x - 2y = 2, 3x + 5y = 6 is

  • 3)

    The value of \(\sum _{ i=1 }^{ 13 }{ \left( { i }^{ n }+i^{ n-1 } \right) } \) is

  • 4)

    According to the rational root theorem, which number is not possible rational root of 4x7+2x4-10x3-5?

  • 5)

    If sin-1 x+sin-1 y+sin-1 z=\(\frac{3\pi}{2}\), the value of x2017+y2018+z2019\(-\frac { 9 }{ { x }^{ 101 }+{ y }^{ 101 }+{ z }^{ 101 } } \)is

12th Maths - Term 1 Five Mark Model Question Paper - by Satyadevi - Tiruchirappalli - View & Download

  • 1)

    If A = \(\left[ \begin{matrix} 5 & 3 \\ -1 & -2 \end{matrix} \right] \), show that A2 - 3A - 7I2 = O2. Hence find A−1.

  • 2)

    If ax2 + bx + c is divided by x + 3, x − 5, and x − 1, the remainders are 21,61 and 9 respectively. Find a,b and c. (Use Gaussian elimination method.)

  • 3)

    Solve the system: x + y − 2z = 0, 2x − 3y + z = 0, 3x − 7y + 10z = 0, 6x − 9y + 10z = 0.

  • 4)

    Solve the following systems of linear equations by Cramer’s rule:
     3x + 3y − z = 11, 2x − y + 2z = 9, 4x + 3y + 2z = 25.

  • 5)

    Solve the equation z3+27=0 .

12th Maths - Applications of Vector Algebra Two Marks Questions - by Satyadevi - Tiruchirappalli - View & Download

  • 1)

    Find the parametric form of vector equation and Cartesian equations of the straight line passing through the point (−2,3, 4) and parallel to the straight line \(\frac { x-1 }{ -4 } =\frac { y-3 }{ 5 } =\frac { z-8 }{ 6 } \)

  • 2)

    Find the vector and Cartesian equations of the plane passing through the point with position vector \(4\hat { i } +2\hat { j } -3\hat { k } \) and normal to vector \(2\hat { i } -\hat { j } +\hat { k } \)

  • 3)

    A variable plane moves in such a way that the sum of the reciprocals of its intercepts on the coordinate axes is a constant. Show that the plane passes through a fixed point

  • 4)

    Find the vector and Cartesian equations of the plane passing through the point with position vector \(2\hat { i } +6\hat { j } +3\hat { k } \) and normal to the vector \(\hat { i } +3\hat { j } +5\hat { k } \)

  • 5)

    A plane passes through the point (−1,1, 2) and the normal to the plane of magnitude \(3\sqrt { 3 } \) makes equal acute angles with the coordinate axes. Find the equation of the plane.

12th Maths - Two Dimensional Analytical Geometry II Two Marks Questions - by Satyadevi - Tiruchirappalli - View & Download

  • 1)

    Find the general equation of a circle with centre(-3,-4) and radius 3 units.

  • 2)

    Find the general equation of the circle whose diameter is the line segment joining the points (−4,−2)and (1,1).

  • 3)

    Examine the position of the point (2,3) with respect to the circle x2+y2−6x−8y+12=0.

  • 4)

    Find the equation of the circle with centre (2,-1) and passing through the point (3,6) in standard form.

  • 5)

    Obtain the equation of the circle for which (3,4) and (2,-7) are the ends of a diameter.

12th Maths - Inverse Trigonometric Functions Two Marks Questions - by Satyadevi - Tiruchirappalli - View & Download

  • 1)

    State the reason for cos-1\([cos(-\frac{\pi}{6})]\neq \frac{\pi}{6}.\)

  • 2)

    Is cos-1(-x)=\(\pi\)-cos−1(x) true? Justify your answer.

  • 3)

    Find the principal value of cos-1\((\frac{1}{2})\).

  • 4)

    Find the value of sec−1\(\left( -\frac { 2\sqrt { 3 } }{ 3 } \right) \)

  • 5)

    If cot-1\(\frac{1}{7}=\theta\), find the value of cos\(\theta\).
     

12th Maths - Theory of Equations Two Marks Questions - by Satyadevi - Tiruchirappalli - View & Download

  • 1)

    A 12 metre tall tree was broken into two parts. It was found that the height of the part which was left standing was the cube root of the length of the part that was cut away. Formulate this into a mathematical problem to find the height of the part which was cut away.

  • 2)

    Find the monic polynomial equation of minimum degree with real coefficients having 2-\(\sqrt{3}\)i as a root.

  • 3)

    Find a polynomial equation of minimum degree with rational coefficients, having 2+\(\sqrt{3}\)i as a root.

  • 4)

    Find a polynomial equation of minimum degree with rational coefficients, having 2i+3 as a root.

  • 5)

    Show that the polynomial 9x9+2x5-x4-7x2+2 has at least six imaginary roots.

12th Maths - Complex Numbers Two Marks Questions - by Satyadevi - Tiruchirappalli - View & Download

  • 1)

    If z=x+iy, find the following in rectangular form.
    \(Re\left( \cfrac { 1 }{ z } \right) \)

  • 2)

    Represent the complex number −1−i

  • 3)

    Write the following in the rectangular form:
    \(\cfrac { 10-5i }{ 6+2i } \)

  • 4)

    Find the square roots of −6+8i

  • 5)

    Obtain the Cartesian form of the locus of z=x+iy in
    \(\overline { z } =2^{ -1 }\)

12th Maths Unit 1 Application of Matrices and Determinants Two Marks Questions - by Satyadevi - Tiruchirappalli - View & Download

  • 1)

    If A = \(\left[ \begin{matrix} a & b \\ c & d \end{matrix} \right] \) is non-singular, find A−1.

  • 2)

    If adj A = \(\left[ \begin{matrix} -1 & 2 & 2 \\ 1 & 1 & 2 \\ 2 & 2 & 1 \end{matrix} \right] \), find A−1.

  • 3)

    Find the rank of the following matrices which are in row-echelon form :
    \(\left[ \begin{matrix} 2 & 0 & -7 \\ 0 & 3 & 1 \\ 0 & 0 & 1 \end{matrix} \right] \)

  • 4)

    Find the rank of the following matrices by minor method:
    \(\left[ \begin{matrix} 0 \\ \begin{matrix} 0 \\ 8 \end{matrix} \end{matrix}\begin{matrix} 1 \\ \begin{matrix} 2 \\ 1 \end{matrix} \end{matrix}\begin{matrix} 2 \\ \begin{matrix} 4 \\ 0 \end{matrix} \end{matrix}\begin{matrix} 1 \\ \begin{matrix} 3 \\ 2 \end{matrix} \end{matrix} \right] \)

  • 5)

    Find the rank of the following matrices which are in row-echelon form :
    \(\left[ \begin{matrix} 6 \\ \begin{matrix} 0 \\ \begin{matrix} 0 \\ 0 \end{matrix} \end{matrix} \end{matrix}\begin{matrix} 0 \\ \begin{matrix} 2 \\ \begin{matrix} 0 \\ 0 \end{matrix} \end{matrix} \end{matrix}\begin{matrix} -9 \\ \begin{matrix} 0 \\ \begin{matrix} 0 \\ 0 \end{matrix} \end{matrix} \end{matrix} \right] \)

12th Maths Quarterly Model Question Paper - by Satyadevi - Tiruchirappalli - View & Download

  • 1)

    If |adj(adj A)| = |A|9, then the order of the square matrix A is

  • 2)

    If A = \(\left[ \begin{matrix} 1 & \tan { \frac { \theta }{ 2 } } \\ -\tan { \frac { \theta }{ 2 } } & 1 \end{matrix} \right] \) and AB = I , then B = 

  • 3)

    If xayb = em, xcyd = en, Δ1 = \(\left| \begin{matrix} m & b \\ n & d \end{matrix} \right| \), Δ2 = \(\left| \begin{matrix} a & m \\ c & n \end{matrix} \right| \), Δ3 = \(\left| \begin{matrix} a & b \\ c & d \end{matrix} \right| \), then the values of x and y are respectively,

  • 4)

    If AT is the transpose of a square matrix A, then

  • 5)

    If \(\rho\)(A) = \(\rho\)([A/B]) = number of unknowns, then the system is

TN 12th Standard Maths Official Model Question Paper 2019 - 2020 - by Satyadevi - Tiruchirappalli - View & Download

unit test - by Maths TAMILMedium - New syllabus 2019 - View & Download

  • 1)

    If |adj(adj A)| = |A|9, then the order of the square matrix A is

  • 2)

    If A is a 3 × 3 non-singular matrix such that AAT = ATA and B = A-1AT, then BBT = 

  • 3)

    If A = \(\left[ \begin{matrix} 3 & 5 \\ 1 & 2 \end{matrix} \right] \), B = adj A and C = 3A, then \(\frac { \left| adjB \right| }{ \left| C \right| } \)

  • 4)

    If A = \(\left[ \begin{matrix} 2 & 0 \\ 1 & 5 \end{matrix} \right] \) and B = \(\left[ \begin{matrix} 1 & 4 \\ 2 & 0 \end{matrix} \right] \) then |adj (AB)| = 

  • 5)

    If P = \(\left[ \begin{matrix} 1 & x & 0 \\ 1 & 3 & 0 \\ 2 & 4 & -2 \end{matrix} \right] \) is the adjoint of 3 × 3 matrix A and |A| = 4, then x is

12th Standard Maths Unit 6 Applications of Vector Algebra Book Back Questions - by Satyadevi - Tiruchirappalli - View & Download

  • 1)

    If \(\vec{a}\) and \(\vec{b}\) are parallel vectors, then \([\vec { a } ,\vec { c } ,\vec { b } ]\) is equal to

  • 2)

    If \(\vec { a } \) and \(\vec { b } \) are unit vectors such that \([\vec { a } ,\vec { b },\vec { a } \times \vec { b } ]=\frac { \pi }{ 4 } \), then the angle between \(\vec { a } \) and \(\vec { b } \) is

  • 3)

    If \(\vec { a } ,\vec { b } ,\vec { c } \) are three non-coplanar vectors such that \(\vec { a } \times (\vec { b } \times \vec { c } )=\frac { \vec { b } +\vec { c } }{ \sqrt { 2 } } \), then the angle between

  • 4)

    If \(\vec { a } \times (\vec { b } \times \vec { c } )=(\vec { a } \times \vec { b } )\times \vec { c } \) where \(\vec { a } ,\vec { b } ,\vec { c } \) are any three vectors such that \(\vec { a } ,\vec { b } \) \(\neq \) 0 and  \(\vec { a } .\vec { b } \) \(\neq \) 0 then \(\vec { a } \) and \(\vec { c } \) are

  • 5)

    The angle between the line \(\vec { r } =(\hat { i } +2\hat { j } -3\hat { k } )+t(2\hat { i } +\hat { j } -2\hat { k } )\) and the plane \(\vec { r } .(\hat { i } +\hat { j } )+4=0\) is

12th Maths - Two Dimensional Analytical Geometry-II Book Back Questions - by Satyadevi - Tiruchirappalli - View & Download

  • 1)

    The equation of the circle passing through(1,5) and (4,1) and touching y -axis is x2+y2−5x−6y+9+(4x+3y−19)=0 whereλ is equal to

  • 2)

    The radius of the circle3x2+by2+4bx−6by+b2 =0 is

  • 3)

    If P(x, y) be any point on 16x2+25y2=400 with foci F1 (3,0) and F2 (-3,0) then PF1 PF2 +
    is

  • 4)

    The ellipse E1\(\frac { { x }^{ 2 } }{ 9 } +\frac { { y }^{ 2 } }{ 4 } =1\) is inscribed in a rectangle R whose sides are parallel to the coordinate axes. Another ellipse E2 passing through the point(0,4) circumscribes the rectangle R . The eccentricity of the ellipse is

  • 5)

    Tangents are drawn to the hyperbola  \(\frac { { x }^{ 2 } }{ 9 } +\frac { { y }^{ 2 } }{ 4 } =1\) 1parallel to the straight line2x−y=1. One of
    the points of contact of tangents on the hyperbola is

12th Standard Maths - Theory of Equations Book Back Questions - by Satyadevi - Tiruchirappalli - View & Download

  • 1)

    If α,β and γ are the roots of x3+px2+qx+r, then \(\Sigma \frac { 1 }{ \alpha } \) is

  • 2)

    According to the rational root theorem, which number is not possible rational root of 4x7+2x4-10x3-5?

  • 3)

    The number of real numbers in [0,2π] satisfying sin4x-2sin2x+1 is

  • 4)

    The polynomial x3+2x+3 has

  • 5)

    The number of positive zeros of the polynomial \(\overset { n }{ \underset { j=0 }{ \Sigma } } { n }_{ C_{ r } }\)(-1)rxr is

12th Standard Maths - Inverse Trigonometric Functions Book Back Questions - by Satyadevi - Tiruchirappalli - View & Download

  • 1)

    The value of sin-1 (cos x),0\(\le x\le\pi\) is

  • 2)

    If cot−1x=\(\frac{2\pi}{5}\) for some x\(\in\)R, the value of tan-1 x is

  • 3)

    The domain of the function defined by f(x)=sin−1\(\sqrt{x-1} \) is

  • 4)

    \({ tan }^{ -1 }\left( \frac { 1 }{ 4 } \right) +{ tan }^{ -1 }\left( \frac { 2 }{ 3 } \right) \)is equal to

  • 5)

    If the function f(x)sin-1(x2-3), then x belongs to

12th Standard Maths Unit 2 Complex Numbers Book Back Questions - by Satyadevi - Tiruchirappalli - View & Download

  • 1)

    If \(z=\cfrac { \left( \sqrt { 3 } +i \right) ^{ 3 }\left( 3i+4 \right) ^{ 2 } }{ \left( 8+6i \right) ^{ 2 } } \) , then |z| is equal to 
     

  • 2)

    If |z-2+i|≤2, then the greatest value of |z| is

  • 3)

    If |z|=1, then the value of \(\cfrac { 1+z }{ 1+\overline { z } }\) is

  • 4)

    If |z1|=1,|z2|=2|z3|=3 and |9z1z2+4z1z3+z2z3|=12, then the value of |z1+z2+z3| is 

  • 5)

    The principal argument of \(\cfrac { 3 }{ -1+i } \)

12th Standard Maths Unit 1 Application of Matrices and Determinants Book Back Questions - by Satyadevi - Tiruchirappalli - View & Download

  • 1)

    If |adj(adj A)| = |A|9, then the order of the square matrix A is

  • 2)

    If A is a 3 × 3 non-singular matrix such that AAT = ATA and B = A-1AT, then BBT = 

  • 3)

    If A = \(\left[ \begin{matrix} 3 & 5 \\ 1 & 2 \end{matrix} \right] \), B = adj A and C = 3A, then \(\frac { \left| adjB \right| }{ \left| C \right| } \)

  • 4)

    If A = \(\left[ \begin{matrix} 7 & 3 \\ 4 & 2 \end{matrix} \right] \), then 9I - A = 

  • 5)

    If A = \(\left[ \begin{matrix} 2 & 0 \\ 1 & 5 \end{matrix} \right] \) and B = \(\left[ \begin{matrix} 1 & 4 \\ 2 & 0 \end{matrix} \right] \) then |adj (AB)| = 

12th Standard Maths Unit 3 Theory of Equations One Mark Question and Answer - by Satyadevi - Tiruchirappalli - View & Download

  • 1)

    A zero of x3 + 64 is

  • 2)

    If f and g are polynomials of degrees m and n respectively, and if h(x) =(f 0 g)(x), then the degree of h is

  • 3)

    A polynomial equation in x of degree n always has

  • 4)

    If a, b, c ∈ Q and p +√q (p,q ∈ Q) is an irrational root of ax2+bx+c=0 then the other root is

  • 5)

    The quadratic equation whose roots are ∝ and β is

12th Standard Maths Unit 2 Complex Numbers One Mark Question and Answer - by Satyadevi - Tiruchirappalli - View & Download

  • 1)

    in+in+1+in+2+in+3 is

  • 2)

    The value of \(\sum _{ i=1 }^{ 13 }{ \left( { i }^{ n }+i^{ n-1 } \right) } \) is

  • 3)

    The area of the triangle formed by the complex numbers z,iz, and z+iz in the Argand’s diagram is

  • 4)

    The principal value of the amplitude of (1+i) is

  • 5)

    The least positive integer n such that \(\left( \frac { 2i }{ 1+i } \right) ^{ n }\)  is a positive integer is

12th Standard Maths - Application of Matrices and Determinants One Mark Question and Answer - by Satyadevi - Tiruchirappalli - View & Download

  • 1)

    If A is a 3 × 3 non-singular matrix such that AAT = ATA and B = A-1AT, then BBT = 

  • 2)

    If A = \(\left[ \begin{matrix} 7 & 3 \\ 4 & 2 \end{matrix} \right] \), then 9I - A = 

  • 3)

    If A = \(\left[ \begin{matrix} 3 & 1 & -1 \\ 2 & -2 & 0 \\ 1 & 2 & -1 \end{matrix} \right] \) and A-1 = \(\left[ \begin{matrix} { a }_{ 11 } & { a }_{ 12 } & { a }_{ 13 } \\ { a }_{ 21 } & { a }_{ 22 } & { a }_{ 23 } \\ { a }_{ 31 } & { a }_{ 32 } & { a }_{ 33 } \end{matrix} \right] \) then the value of a23 is

  • 4)

    Let A be a 3 x 3 matrix and B its adjoint matrix If |B|=64, then |A|=

  • 5)

    If AT is the transpose of a square matrix A, then

12th Standard Physics Unit 6 Applications of Vector Algebra One Mark Question and Answer - by Satyadevi - Tiruchirappalli - View & Download

  • 1)

    If \(\vec{a}\) and \(\vec{b}\) are parallel vectors, then \([\vec { a } ,\vec { c } ,\vec { b } ]\) is equal to

  • 2)

    If \(\vec { a } \) and \(\vec { b } \) are unit vectors such that \([\vec { a } ,\vec { b },\vec { a } \times \vec { b } ]=\frac { \pi }{ 4 } \), then the angle between \(\vec { a } \) and \(\vec { b } \) is

  • 3)

    If \(\vec { a } =\hat { i } +\hat { j } +\hat { k } \)\(\vec { b } =\hat { i } +\hat { j } \)\(\vec { c } =\hat { i } \) and \((\vec { a } \times \vec { b } )\times\vec { c } \) = \(\lambda \vec { a } +\mu \vec { b } \) then the value of \(\lambda +\mu \) is

  • 4)

    If \(\vec { a } ,\vec { b } ,\vec { c } \) are non-coplanar, non-zero vectors such that \([\vec { a } ,\vec { b } ,\vec { c } ]\) = 3, then \({ \{ [\vec { a } \times \vec { b } ,\vec { b } \times \vec { c } ,\vec { c } \times \vec { a } }]\} ^{ 2 }\) is equal to

  • 5)

    The number of vectors of unit length perpendicular to the vectors \(\left( \overset { \wedge }{ i } +\overset { \wedge }{ j } \right) \) and \(\left( \overset { \wedge }{ j } +\overset { \wedge }{ k } \right) \)is

12th Physics Chapter 5 Two Dimensional Analytical Geometry-II One Mark Question and Answer - by Satyadevi - Tiruchirappalli - View & Download

  • 1)

    The equation of the circle passing through(1,5) and (4,1) and touching y -axis is x2+y2−5x−6y+9+(4x+3y−19)=0 whereλ is equal to

  • 2)

    The radius of the circle3x2+by2+4bx−6by+b2 =0 is

  • 3)

    The centre of the circle inscribed in a square formed by the lines x2−8x−12=0 and
    y2−14y+45 = 0 is

  • 4)

    Equation of tangent at (-4, -4) on x2 = -4y is

  • 5)

    y2 - 2x - 2y + 5 = 0 is a

12th Standard Physics Chapter 4 Inverse Trigonometric Functions One Mark Question and Answer - by Satyadevi - Tiruchirappalli - View & Download

  • 1)

    The value of sin-1 (cos x),0\(\le x\le\pi\) is

  • 2)

    \({ sin }^{ -1 }\frac { 3 }{ 5 } -{ cos }^{ -1 }\frac { 12 }{ 13 } +{ sec }^{ -1 }\frac { 5 }{ 3 } { -cosec }^{ 1- }\frac { 13 }{ 2 } \)is equal to

  • 3)

    If sin-1 x+sin-1 y+sin-1 z=\(\frac{3\pi}{2}\), the value of x2017+y2018+z2019\(-\frac { 9 }{ { x }^{ 101 }+{ y }^{ 101 }+{ z }^{ 101 } } \)is

  • 4)

    If \({ sin }^{ -1 }x-cos^{ -1 }x=\cfrac { \pi }{ 6 } \) then

  • 5)

    The number of solutions of the equation \({ tan }^{ -1 }2x+{ tan }^{ -1 }3x=\cfrac { \pi }{ 4 } \) 

12th Physics Unit 2 Theory of Equations One Mark Question with Answer Key - by Satyadevi - Tiruchirappalli - View & Download

  • 1)

    If α,β and γ are the roots of x3+px2+qx+r, then \(\Sigma \frac { 1 }{ \alpha } \) is

  • 2)

    The polynomial x3-kx2+9x has three real zeros if and only if, k satisfies

  • 3)

    If x3+12x2+10ax+1999 definitely has a positive zero, if and only if

  • 4)

    The number of positive zeros of the polynomial \(\overset { n }{ \underset { j=0 }{ \Sigma } } { n }_{ C_{ r } }\)(-1)rxr is

  • 5)

    If a, b, c ∈ Q and p +√q (p,q ∈ Q) is an irrational root of ax2+bx+c=0 then the other root is

12th Maths Chapter 2 Complex Numbers One Mark Question Paper - by Satyadevi - Tiruchirappalli - View & Download

  • 1)

    The value of \(\sum _{ i=1 }^{ 13 }{ \left( { i }^{ n }+i^{ n-1 } \right) } \) is

  • 2)

    If z is a non zero complex number, such that 2iz2=\(\bar { z } \) then |z| is

  • 3)

    If |z-2+i|≤2, then the greatest value of |z| is

  • 4)

    If |z|=1, then the value of \(\cfrac { 1+z }{ 1+\overline { z } }\) is

  • 5)

    The solution of the equation |z|-z=1+2i is

Unit test 12th Standard Maths New syllabus - by Maths TAMILMedium - New syllabus 2019 - View & Download

  • 1)

    If A = \(\left[ \begin{matrix} 7 & 3 \\ 4 & 2 \end{matrix} \right] \), then 9I - A = 

  • 2)

    If P = \(\left[ \begin{matrix} 1 & x & 0 \\ 1 & 3 & 0 \\ 2 & 4 & -2 \end{matrix} \right] \) is the adjoint of 3 × 3 matrix A and |A| = 4, then x is

  • 3)

    If A, B and C are invertible matrices of some order, then which one of the following is not true?

  • 4)

    If (AB)-1 = \(\left[ \begin{matrix} 12 & -17 \\ -19 & 27 \end{matrix} \right] \) and A-1 = \(\left[ \begin{matrix} 1 & -1 \\ -2 & 3 \end{matrix} \right] \), then B-1 = 

  • 5)

    If ATA−1 is symmetric, then A2 =

12th Maths Chapter 1 Application of Matrices and Determinants One Mark Questions - by Satyadevi - Tiruchirappalli - View & Download

  • 1)

    If |adj(adj A)| = |A|9, then the order of the square matrix A is

  • 2)

    If A is a 3 × 3 non-singular matrix such that AAT = ATA and B = A-1AT, then BBT = 

  • 3)

    If A = \(\left[ \begin{matrix} 2 & 0 \\ 1 & 5 \end{matrix} \right] \) and B = \(\left[ \begin{matrix} 1 & 4 \\ 2 & 0 \end{matrix} \right] \) then |adj (AB)| = 

  • 4)

    If P = \(\left[ \begin{matrix} 1 & x & 0 \\ 1 & 3 & 0 \\ 2 & 4 & -2 \end{matrix} \right] \) is the adjoint of 3 × 3 matrix A and |A| = 4, then x is

  • 5)

    If A, B and C are invertible matrices of some order, then which one of the following is not true?

12th Maths Quarterly Exam Model Two Marks Question Paper - by Satyadevi - Tiruchirappalli - View & Download

  • 1)

    If A = \(\left[ \begin{matrix} a & b \\ c & d \end{matrix} \right] \) is non-singular, find A−1.

  • 2)

    Reduce the matrix \(\left[ \begin{matrix} 3 & -1 & 2 \\ -6 & 2 & 4 \\ -3 & 1 & 2 \end{matrix} \right] \) to a row-echelon form.

  • 3)

    Find the rank of the following matrices by minor method:
    \(\left[ \begin{matrix} 1 & -2 & 3 \\ 2 & 4 & -6 \\ 5 & 1 & -1 \end{matrix} \right] \)

  • 4)

    Simplify \(\left( \cfrac { 1+i }{ 1-i } \right) ^{ 3 }-\left( \cfrac { 1-i }{ 1+i } \right) ^{ 3 }\)

  • 5)

    Represent the complex number −1−i

12th Maths Unit 6 Applications of Vector Algebra Model Question Paper - by Satyadevi - Tiruchirappalli - View & Download

  • 1)

    If a vector \(\vec { \alpha } \) lies in the plane of \(\vec { \beta } \) and \(\vec { \gamma } \) , then

  • 2)

    If \(\vec { a } \) and \(\vec { b } \) are unit vectors such that \([\vec { a } ,\vec { b },\vec { a } \times \vec { b } ]=\frac { \pi }{ 4 } \), then the angle between \(\vec { a } \) and \(\vec { b } \) is

  • 3)

    If \(\vec { a } ,\vec { b } ,\vec { c } \) are three non-coplanar vectors such that \(\vec { a } \times (\vec { b } \times \vec { c } )=\frac { \vec { b } +\vec { c } }{ \sqrt { 2 } } \), then the angle between

  • 4)

    The angle between the lines \(\frac { x-2 }{ 3 } =\frac { y+1 }{ -2 } \), z=2 and \(\frac { x-1 }{ 1 } =\frac { 2y+3 }{ 3 } =\frac { z+5 }{ 2 } \)

  • 5)

    Distance from the origin to the plane 3x - 6y + 2z 7 = 0 is

12th Standard Maths Quarterly Exam Model One Mark Question Paper - by Satyadevi - Tiruchirappalli - View & Download

  • 1)

    If |adj(adj A)| = |A|9, then the order of the square matrix A is

  • 2)

    If A = \(\left[ \begin{matrix} 3 & 5 \\ 1 & 2 \end{matrix} \right] \), B = adj A and C = 3A, then \(\frac { \left| adjB \right| }{ \left| C \right| } \)

  • 3)

    If A\(\left[ \begin{matrix} 1 & -2 \\ 1 & 4 \end{matrix} \right] =\left[ \begin{matrix} 6 & 0 \\ 0 & 6 \end{matrix} \right] \), then A = 

  • 4)

    If A = \(\left[ \begin{matrix} 7 & 3 \\ 4 & 2 \end{matrix} \right] \), then 9I - A = 

  • 5)

    If A = \(\left[ \begin{matrix} \frac { 3 }{ 5 } & \frac { 4 }{ 5 } \\ x & \frac { 3 }{ 5 } \end{matrix} \right] \) and AT = A−1 , then the value of x is

Plus 2 Maths Chapter 5 Two Dimensional Analytical Geometry - II Model Questions - by Satyadevi - Tiruchirappalli - View & Download

  • 1)

    The equation of the circle passing through(1,5) and (4,1) and touching y -axis is x2+y2−5x−6y+9+(4x+3y−19)=0 whereλ is equal to

  • 2)

    The centre of the circle inscribed in a square formed by the lines x2−8x−12=0 and
    y2−14y+45 = 0 is

  • 3)

    If x+y=k is a normal to the parabola y2 =12x, then the value of k is

  • 4)

    Equation of tangent at (-4, -4) on x2 = -4y is

  • 5)

    y2 - 2x - 2y + 5 = 0 is a

12th Standard Maths First Mid Term Model Question Paper - by Satyadevi - Tiruchirappalli - View & Download

  • 1)

    If A\(\left[ \begin{matrix} 1 & -2 \\ 1 & 4 \end{matrix} \right] =\left[ \begin{matrix} 6 & 0 \\ 0 & 6 \end{matrix} \right] \), then A = 

  • 2)

    If A, B and C are invertible matrices of some order, then which one of the following is not true?

  • 3)

    The system of linear equations x + y + z  = 6, x + 2y + 3z =14 and 2x + 5y + λz =μ (λ, μ \(\in \) R) is consistent with unique solution if

  • 4)

    The value of (1+i)4 + (1-i)4 is

  • 5)

    The value of \(\frac { (cos{ 45 }^{ 0 }+isin{ 45 }^{ 0 })^{ 2 }(cos{ 30 }^{ 0 }-isin{ 30 }^{ 0 }) }{ cos{ 30 }^{ 0 }+isin{ 30 }^{ 0 } } \) is

11th Standard Mathematics Chapter 4 Inverse Trigonometric Functions Important Question Paper - by Satyadevi - Tiruchirappalli - View & Download

  • 1)

    The value of sin-1 (cos x),0\(\le x\le\pi\) is

  • 2)

    If sin-1 x+sin-1 y=\(\frac{2\pi}{3};\)then cos-1x+cos-1 y is equal to

  • 3)

    \({ sin }^{ -1 }\frac { 3 }{ 5 } -{ cos }^{ -1 }\frac { 12 }{ 13 } +{ sec }^{ -1 }\frac { 5 }{ 3 } { -cosec }^{ 1- }\frac { 13 }{ 2 } \)is equal to

  • 4)

    If \(\alpha ={ tan }^{ -1 }\left( tan\cfrac { 5\pi }{ 4 } \right) \) and \(\beta ={ tan }^{ -1 }\left( -tan\cfrac { 2\pi }{ 3 } \right) \) then

  • 5)

    The number of real solutions of the equation \(\sqrt { 1+cos2x } ={ 2sin }^{ -1 }\left( sinx \right) ,-\pi <x<\pi \) is

12th Standard Maths Chapter 3 Theory of Equations Important Question Paper - by Satyadevi - Tiruchirappalli - View & Download

  • 1)

    A zero of x3 + 64 is

  • 2)

    The number of real numbers in [0,2π] satisfying sin4x-2sin2x+1 is

  • 3)

    If x3+12x2+10ax+1999 definitely has a positive zero, if and only if

  • 4)

    The polynomial x3+2x+3 has

  • 5)

    Ifj(x) = 0 has n roots, thenf'(x) = 0 has __________ roots

Model MID-TERM - by MUTHU M - View & Download

Model MID-TERM - by MUTHU M - View & Download

12th Maths Unit 2 Important Question Paper - by Satyadevi - Tiruchirappalli - View & Download

  • 1)

    The value of \(\sum _{ i=1 }^{ 13 }{ \left( { i }^{ n }+i^{ n-1 } \right) } \) is

  • 2)

    If z is a non zero complex number, such that 2iz2=\(\bar { z } \) then |z| is

  • 3)

    z1, z2 and z3 are complex number such that z1+z2+z3=0 and |z1|=|z2|=|z3|=1 then z12+z22+z33 is

  • 4)

    If z1, z2, z3 are the vertices of a parallelogram, then the fourth vertex z4 opposite to z2 is _____

  • 5)

    If xr=\(cos\left( \frac { \pi }{ 2^{ r } } \right) +isin\left( \frac { \pi }{ 2^{ r } } \right) \) then x1, x2 ... x is

Slip Test Unit 3 (A2) - by MUTHU M - View & Download

  • 1)

    Find the sum of squares of roots of the equation 2x4-8x+6x2-3=0.

  • 2)

    If α, β, γ  and \(\delta\) are the roots of the polynomial equation 2x4+5x3−7x2+8=0 , find a quadratic equation with integer coefficients whose roots are α + β + γ + \(\delta\) and αβ૪\(\delta\).

  • 3)

    Find a polynomial equation of minimum degree with rational coefficients, having \(\sqrt{5}\)\(\sqrt{3}\) as a root.

  • 4)

    Solve: (2x-1)(x+3)(x-2)(2x+3)+20=0

  • 5)

    Solve the equation 3x3-26x2+52x-24=0 if its roots form a geometric progression.

slip test - by MUTHU M - View & Download

  • 1)

    Find the sum of squares of roots of the equation 2x4-8x+6x2-3=0.

  • 2)

    If the equations x2+px+q= 0 and x2+p'x+q'= 0 have a common root, show that it must  be equal to \(\frac { pq'-p'q }{ q-q' } \) or \(\frac { q-q' }{ p'-p } \).

  • 3)

    A 12 metre tall tree was broken into two parts. It was found that the height of the part which was left standing was the cube root of the length of the part that was cut away. Formulate this into a mathematical problem to find the height of the part which was cut away.

  • 4)

    If α and β are the roots of the quadratic equation 17x2+43x−73 = 0 , construct a quadratic equation whose roots are α + 2 and β + 2.

  • 5)

    If α and β are the roots of the quadratic equation 2x2−7x+13 = 0 , construct a quadratic equation whose roots are α2 and β2.

Weekly test-1:JUNE2019 - by MUTHU M - View & Download

  • 1)

    If A\(\left[ \begin{matrix} 1 & -2 \\ 1 & 4 \end{matrix} \right] =\left[ \begin{matrix} 6 & 0 \\ 0 & 6 \end{matrix} \right] \), then A = 

  • 2)

    If A is a non-singular matrix such that A-1 = \(\left[ \begin{matrix} 5 & 3 \\ -2 & -1 \end{matrix} \right] \), then (AT)−1 =

  • 3)

    If A = \(\left[ \begin{matrix} 1 & \tan { \frac { \theta }{ 2 } } \\ -\tan { \frac { \theta }{ 2 } } & 1 \end{matrix} \right] \) and AB = I , then B = 

  • 4)

    If A =\(\left( \begin{matrix} cosx & sinx \\ -sinx & cosx \end{matrix} \right) \) and A(adj A) =\(\lambda \) \(\left( \begin{matrix} 1 & 0 \\ 0 & 1 \end{matrix} \right) \) then \(\lambda \) is

  • 5)

    In a square matrix the minor Mij and the' co-factor Aij of and element aij are related by _____

12th Maths - Unit 1 Full Important Question Paper - by Satyadevi - Tiruchirappalli - View & Download

  • 1)

    If |adj(adj A)| = |A|9, then the order of the square matrix A is

  • 2)

    If A is a 3 × 3 non-singular matrix such that AAT = ATA and B = A-1AT, then BBT = 

  • 3)

    If A = \(\left[ \begin{matrix} 3 & 5 \\ 1 & 2 \end{matrix} \right] \), B = adj A and C = 3A, then \(\frac { \left| adjB \right| }{ \left| C \right| } \)

  • 4)

    If A\(\left[ \begin{matrix} 1 & -2 \\ 1 & 4 \end{matrix} \right] =\left[ \begin{matrix} 6 & 0 \\ 0 & 6 \end{matrix} \right] \), then A = 

  • 5)

    If A = \(\left[ \begin{matrix} 7 & 3 \\ 4 & 2 \end{matrix} \right] \), then 9I - A = 

frequently asked two marks in twelfth standard maths english medium - by Mythily - View & Download

  • 1)

    For any 2 x 2 matrix, if A (adj A) =\(\left[ \begin{matrix} 10 & 0 \\ 0 & 10 \end{matrix} \right] \) then find |A|.

  • 2)

    For the matrix A, if A3 = I, then find A-1.

  • 3)

    If A is a square matrix such that A3 = I, then prove that A is non-singular.

  • 4)

    Show that the system of equations is inconsistent. 2x + 5y= 7, 6x + 15y = 13.

  • 5)

    Flod the rank of the matrix \(\left[ \begin{matrix} 3 & -1 & 1 \\ -15 & 6 & -5 \\ 5 & -2 & 2 \end{matrix} \right] \).

+2 english medium creative multiple choice questions in maths chapter one - by Mythily - View & Download

  • 1)

    The system of linear equations x + y + z  = 6, x + 2y + 3z =14 and 2x + 5y + λz =μ (λ, μ \(\in \) R) is consistent with unique solution if

  • 2)

    If the system of equations x = cy + bz, y = az + cx and z = bx + ay has a non - trivial solution then

  • 3)

    Let A be a 3 x 3 matrix and B its adjoint matrix If |B|=64, then |A|=

  • 4)

    If AT is the transpose of a square matrix A, then

  • 5)

    The number of solutions of the system of equations 2x+y = 4, x - 2y = 2, 3x + 5y = 6 is

Important one mark questions 12th maths english medium chapter one - by Mythily - View & Download

  • 1)

    If |adj(adj A)| = |A|9, then the order of the square matrix A is

  • 2)

    If A is a 3 × 3 non-singular matrix such that AAT = ATA and B = A-1AT, then BBT = 

  • 3)

    If A = \(\left[ \begin{matrix} 3 & 5 \\ 1 & 2 \end{matrix} \right] \), B = adj A and C = 3A, then \(\frac { \left| adjB \right| }{ \left| C \right| } \)

  • 4)

    If A\(\left[ \begin{matrix} 1 & -2 \\ 1 & 4 \end{matrix} \right] =\left[ \begin{matrix} 6 & 0 \\ 0 & 6 \end{matrix} \right] \), then A = 

  • 5)

    If A = \(\left[ \begin{matrix} 7 & 3 \\ 4 & 2 \end{matrix} \right] \), then 9I - A = 

UNIT TEST - 1 - by Palanivel - View & Download

  • 1)

    If F(\(\alpha\)) = \(\left[ \begin{matrix} \cos { \alpha } & 0 & \sin { \alpha } \\ 0 & 1 & 0 \\ -\sin { \alpha } & 0 & \cos { \alpha } \end{matrix} \right] \), show that [F(\(\alpha\))]-1 = F(-\(\alpha\)).

  • 2)

    If A = \(\left[ \begin{matrix} 5 & 3 \\ -1 & -2 \end{matrix} \right] \), show that A2 - 3A - 7I2 = O2. Hence find A−1.

  • 3)

    If A = \(\frac { 1 }{ 9 } \left[ \begin{matrix} -8 & 1 & 4 \\ 4 & 4 & 7 \\ 1 & -8 & 4 \end{matrix} \right] \), prove that A−1 = AT.

  • 4)

    If A = \(\left[ \begin{matrix} 3 & 2 \\ 7 & 5 \end{matrix} \right] \) and B = \(\left[ \begin{matrix} -1 & -3 \\ 5 & 2 \end{matrix} \right] \), verify that (AB)-1 = B-1A-1

  • 5)

    If adj(A) = \(\left[ \begin{matrix} 2 & -4 & 2 \\ -3 & 12 & -7 \\ -2 & 0 & 2 \end{matrix} \right] \), find A.

View all

TN Stateboard Education Study Materials

TN StateboardStudy Material - Sample Question Papers with Solutions for Class 12 Session 2019 - 2020

Latest Sample Question Papers & Study Material for class 12 session 2019 - 2020 for Subjects Chemistry, Physics, Biology, Computer Science, Business Maths, Economics, Commerce, Accountancy, History, Computer Applications, Computer Technology in PDF form to free download for practice. Download QB365 Free Mobile app & get practice question papers.

More than 1000+ TN Stateboard Syllabus Sample Question Papers & Study Material are based on actual Board question papers which help students to get an idea about the type of questions that will be asked in Class 12 Final Board Public examinations. All the Sample Papers are adhere to TN Stateboard guidelines and its marking scheme , Question Papers & Study Material are prepared and posted by our faculty experts , teachers , tuition teachers from various schools in Tamilnadu.

Hello Students, if you like our sample question papers & study materials , please share these with your friends and classmates.

Related Tags