#### 11th Standard Maths English Medium Free Online Test 1 Mark Questions 2020 - Part Four

11th Standard

Reg.No. :
•
•
•
•
•
•

Maths

Time : 00:10:00 Hrs
Total Marks : 10

10 x 1 = 10
1. The range of the function $f(x) = \left| \left\lfloor x \right\rfloor - x \right| ,x \in R$  is

(a)

[0, 1]

(b)

[0, ∞)

(c)

[0, 1)

(d)

(0, 1)

2. The condition that the equation ax2 + bx + c = 0 may have one root is the double the other is:

(a)

2b2 = 9ac

(b)

b2= ac

(c)

b2 = 4ac

(d)

9b2 = 2ac

3. If $\alpha$ and $\beta$ are two values of θ obtained from the equation a cosθ+b sinθ=c then the value of $tan(\frac{\alpha+\beta}{2})$ is

(a)

$\frac{a}{b}$

(b)

$\frac{b}{a}$

(c)

$\frac{c}{a}$

(d)

$\frac{c}{b}$

4. a polygon has 44 diagonals, then the number of its sides are

(a)

22

(b)

88

(c)

8

(d)

11

5. $\frac{1}{q+r},\frac{1}{r+p},\frac{1}{p+q}$ are in A.P., then

(a)

p,q,r are inA.P

(b)

p2,q2,r2 are inA.P

(c)

$\frac{1}{p},\frac{1}{q},\frac{1}{r}$

(d)

p,q,r are in H.P.

6. Equation of the straight line that forms an isosceles triangle with coordinate axes in the I-quadrant with perimeter 4 + 2$\sqrt{2}$ is

(a)

x+y+2=0

(b)

x+y-2=0

(c)

$x+y-\sqrt{2}=0$

(d)

$x+y+\sqrt{2}=0$

7. If $\left( \begin{matrix} 2 & \lambda & -3 \\ 0 & 2 & 5 \\ 1 & 1 & 3 \end{matrix} \right)$ is a singular matrix, then $\lambda$ is

(a)

$\lambda$=2

(b)

$\lambda$≠2

(c)

$\lambda =\frac { -8 }{ 5 }$

(d)

$\lambda \neq \frac { -8 }{ 5 }$

8. Two vertices of a triangle have position vectors $3\hat{i}+4\hat{j}-4\hat{k}$ and$2\hat{i}+3\hat{j}+4\hat{k}$If the position vector of the centroid is $\hat{i}+2\hat{j}+3\hat{k}$ ,then the position vector of the third vertex is

(a)

$-2\hat{i}-\hat{j}+9\hat{k}$

(b)

$-2\hat{i}-\hat{j}-6\hat{k}$

(c)

$2\hat{i}-\hat{j}+6\hat{k}$

(d)

$-2\hat{i}+\hat{j}+6\hat{k}$

9. $\lim _{ x\rightarrow \infty }{ \left( \frac { 1 }{ x } +2 \right) }$is equal to

(a)

$\infty$

(b)

0

(c)

1

(d)

2

10. Choose the correct or the most suitable answer from the given four alternatives.
$If\quad y=\log { \left( \frac { 1-{ x }^{ 2 } }{ 1+{ x }^{ 2 } } \right) } then\quad \frac { dy }{ dx } \quad is$

(a)

$\frac { 4{ x }^{ 3 } }{ 1-{ x }^{ 4 } }$

(b)

$-\frac { 4x }{ 1-{ x }^{ 4 } }$

(c)

$\frac { 1 }{ 4-{ x }^{ 4 } }$

(d)

$\frac { -4{ x }^{ 3 } }{ 1-{ x }^{ 4 } }$