" /> -->

#### Rational Numbers Model Question Paper

8th Standard EM

Reg.No. :
•
•
•
•
•
•

Maths

Time : 01:00:00 Hrs
Total Marks : 40
5 x 1 = 5
1. The sum of the digits of the denominator in the simplest form of $\frac { 112 }{ 528 }$

(a)

4

(b)

5

(c)

6

(d)

7

2. $\frac { 3 }{ 4 } \div \left( \frac { 5 }{ 8 } +\frac { 1 }{ 2 } \right)$

(a)

$\frac { 13 }{ 10 }$

(b)

$\frac { 2 }{ 3 }$

(c)

$\frac { 3 }{ 2 }$

(d)

$\frac { 5 }{ 8 }$

3. Closure property is not true for division of rational numbers because of the number

(a)

0

(b)

-1

(c)

0

(d)

$\frac { 1 }{ 2 }$

4. $\frac{5}{6}\div\frac{6}{2}$ is

(a)

$\frac{5}{2}$

(b)

$\frac{2}{5}$

(c)

$\frac{5}{18}$

(d)

$\frac{30}{12}$

5. $\frac { 1 }{ 2 } \times \left( \frac { 2 }{ 3 } +\frac { 6 }{ 4 } \right) =\left( \frac { 1 }{ 2 } +\frac { 2 }{ 3 } \right) +\left( \frac { 1 }{ 2 } \times \_ \_ \right)$

(a)

$\frac{1}{2}$

(b)

$\frac{2}{3}$

(c)

$\frac{4}{6}$

(d)

0

6. 5 x 2 = 10
7. Write four rational numbers equivalent to
$\frac { -7 }{ 6 }$

8. Draw the number line and represent the following rational numbers on it.
$\frac { -8 }{ 3 }$

9. Draw the number line and represent the following rational numbers on it.
$\frac { -17 }{ -5 }$

10. Find the rational numbers for the points marked on the number line.

11. Using average, write 3 rational numbers between $\frac { 14 }{ 5 }$ and $\frac { 16 }{ 3 }$

12. 5 x 3 = 15
13. Write the following decimal numbers as rationals.
3.0

14. Write the following decimal numbers as rationals.
−5.8

15. Write the following rational numbers in descending and ascending order.
$\frac { -3 }{ 5 } ,\frac { 7 }{ -10 } ,\frac { -15 }{ 20 } ,\frac { 14 }{ -30 } ,\frac { -8 }{ 15 }$

16. Simplify $\frac { 2 }{ 5 } +\frac { 8 }{ 3 } +\frac { -11 }{ 15 } +\frac { 4 }{ 5 } +\frac { -2 }{ 3 }$

17. Verify x x (y x z) = (x x y) x z for x=$\frac{5}{7},y=\frac{-12}{13}$and z=$\frac{-7}{18}$

18. 2 x 5 = 10
19. Find four rational numbers between $\frac{2}{3}$ and $\frac{4}{5}$

20. Divide the. sum of $\frac{15}{12}$and $\frac{12}{7}$ by their difference.