Bihar Combined Entrance Competitive Examination Medical

Bihar Combined Entrance Competitive Examination is known as BCECE, which is a state level entrance examination conducted for UG courses. Through this entrance exam, students can get admission in various undergraduate programmes in the field of engineering, technology, Medical and agriculture. BCECE 2019 will be conducted in two stages, i.e. Stage 1 and Stage 2 and it is mandatory for the candidate to appear for the Stage 1 in order to reach up the next level i.e. Stage 2. Scroll down to see more details related to BCECE 2019 application form, important dates, eligibility criteria, admit card, exam pattern and many more.

BCECE Medical 2019 Exam Syllabus

BCECE 2019 Exam Syllabus:

BCECE Syllabus 2019 for each subject will be available along with the notification in March 2019. The question papers for BCECE 2019 will be based on the syllabus prescribed by Bihar Combined Entrance Competitive Examination Board (BCECEB) only. With BCECE Syllabus, candidates will get a clear idea about the questions for each subject. The syllabus for Physics, Chemistry, Mathematics and Biology subjects will be same for BCECE stage 1 exam and stage 2 exam. Candidates can check here complete syllabus for BCECE 2019 each subject of PCM/PCB/PCMB groups as mentioned below -

BCECE Syllabus 2019 for Chemistry



Detailed Syllabus


Some basic concepts of Chemistry

General Introduction: Importance and scope of chemistry. Historical approach to particulate nature of matter, laws of chemical combination, Dalton's atomic theory; concept of elements, atoms and molecules, Atomic and molecular masses

Mole concept and molar mass; percentage composition, empirical and molecular formula; chemical reactions, stoichiometry and calculations based on stoichiometry


States of Matter: gases and liquids

Three states of matter, Intermolecular interactions, type of bonding, melting and boiling points

Role of gas laws in elucidating the concept of the molecule, Boyle's law, Charle's law, Gay Lussac's law Avogadro's law, Ideal behaviour, empirical derivation of gas equation

Avogadro's number. Ideal gas equation

Derivation from ideal behaviour, liquification of gases, critical temperature

Liquid State - Vapour pressure, viscosity and surface tension (qualitative idea only, no mathematical derivations)


Structure of Atom

Discovery of electron, proton and neutron and their characteristics; atomic number, Isotopes & Isobars, Thomson's model and its limitation, Rutherford's model and its limitations, Bohr's model and its limitations, concept of shells and subshells, dual nature of matter and light, De Broglic's relationship, Heisenberg uncertainty principle, concept of orbitals, Quantum numbers, shapes of S.P. and D orbitals, rules, for filling electrons in orbitals Aufbau principle, Pauli exclusion principle and Hund's rule, electronic configuration of atoms, stability of half-filled and completely filled orbitals


Chemical Bonding and Molecular Structure

Valence electrons, ionic bond, covalent bond, bond parameters, Lewis structure, polar character of covalent bond, Covalent characters of Ionic bond, valence bond theory, resonance, geometry of covalent molecules, VSEPR theory, concept of hybridization involving s, p and d orbitals and shapes of some simple molecules, molecular orbital, theory of homonuclear diatomic molecules (qualitative idea only)

Hydrogen bonding


Classification of Elements and Periodicity in Properties

Significance of classification, brief history of the development of periodic table, modern periodic law and the present form of periodic table, periodic trends in properties of elements - atomic radii, ionic radii, ionization enthalpy, electron gain enthalpy, electro negativity, valence



Equilibrium in physical and chemical processes dynamic nature of equilibrium, law of mass action, equilibrium constant, factors affecting equilibrium - Le Chatelier's principle; ionic equilibrium - ionization of acids and bases, strong and weak electrolytes, degree of ionization, concept of pH. Hydrolysis of salts (elementary idea), buffer solutions, solubility product, common ion effect (with illustrative examples)



Concepts of system, types of systems, surroundings, work, heat, energy, extensive and intensive properties, state functions, First law of thermodynamics - internal energy and enthalpy, heat capacity and specific heat, measurement of ?U and ?H,

Hess's law of constant heat summation enthalpy of: bond dissociation, combustion, formation, atomization, Sublimation, phase transformation, ionization and solution.

Introduction of entropy as a state function, free energy change for spontaneous and non sponteneous process, criteria for equilibrium


Redox Reactions

Concept of oxidation and reduction, redox reactions, oxidation number, balancing redox reactions, applications of redox reactions



Position of hydrogen in periodic table, occurrence, isotopes, preparation, properties and uses of hydrogen; hydrides- ionic, covalent and interstitial; physical and chemical properties of water, heavy water; hydrogen peroxide - preparation, reactions and structure; hydrogen as a fuel


s-Block Elements (Alkali and Alkaline earth metals)

Group 1 and Group 2 elements:

General introduction, electronic configuration, occurrence, anomalous properties of the first element of each group, diagonal relationship, trends in the variation of properties (such as ionization enthalpy, atomic and ionic radii) trends in chemical reactivity with oxygen, water, hydrogen and halogens; uses

Preparation and properties of some important compounds:

Sodium carbonate, sodium chloride, sodium hydroxide and sodium hydrogen carbonate, biological importance of 25 sodium and potassium.

CaO, CaCO3 and industrial use, lime and limestone Biological importance of Mg and Ca


Some p-Block Elements:

General Introduction p-Block Elements

Group 3 elements: General introduction, electronic configuration, occurrence, Variation of properties, oxidation states, trends in chemical reactivity, anomalous properties of first element of the group; Boron-physical and chemical properties, some important compounds : borax, boric acids, boron hydrides

Aluminium: uses, reactions with acids and alkalies.

Group 4 elements : General introduction, electronic configuration, occurrence, variation of properties, oxidation states, trends in chemical reactivity, anomalous behaviour of first element, Carbon - catenation, allotropic forms, physical and chemical properties;

uses of some important compounds: oxides

Important compounds of Silicon and a few uses: Silicon tetrachloride, silicons, silicates and zeolite. (Part-I)


Organic Chemistry- Some Basic Principles and Techniques

General introduction, methods of qualitative and quantitative analysis, classification and IUPAC nomenclature of organic compounds

Electronic displacements in a covalent bond; inductive effect, electrometric effect, resonance and hyper conjugation

Haemolytic and heterolysis fission of a covalent bond: free radicals, carbocation’s, carbanions; electrophiles and nucleophiles, types of organic reactions



Classification of hydrocarbons

Alkanes: Nomenclature, isomerism, conformations (ethane only), methods of preparation, physical properties, chemical reactions including halogenation, free radical mechanism, combustion and pyrolysis

Alkenes: Nomenclature, structure of double bond

(ethane), geometrical isomerism, methods of preparation, physical properties, chemical reaction: addition of hydrogen, halogen, water, hydrogen halides (Markovnikov's addition and peroxide effect), ozonolysis, oxidation, mechanism of electrophyllic addition

Alkynes: Nomenclature, structure of triple bond (ethyne), methods of preparation, physical properties, chemical reactions; acidic character of alkynes, addition reactions of hydrogen, halogenes, hydrogen halides and water

Aromatic hydrocarbons: Introduction, IUPAC nomenclature, Benzene: resonance, aromaticity: methods of preparation, chemical properties

Mechanism of electrophilec substitution: nitration, sulphonation, halogenation, Friedal Craft's alkylation and acylation; directive influence of functional group in mono-substituted benzene; carcinogenicity and toxicity


Environmental Chemistry

Environmental pollution - Air, water and soil pollution, chemical reactions in atmosphere smogs, major atmospheric

pollutants: acid rain, ozone and its reactions, effects of depletion of ozone layer, greenhouse effect and global warming - pollution due to industrial wastes, green chemistry as an alternative tool for reducing pollution, strategy for control of environmental pollution*

Solid State:

Classification of solids based on different binding forces: molecular, ionic covalent and metallic solids, amorphous and crystalline solids (elementary idea), unit cell in two dimensional and three dimensional lattices, calculation of density of unit cell, packing in solids, voids, number of atoms per unit cell in a cubic unit cell, point defects, electrical and magnetic properties


Types of solutions, expression of concentration of solutions of solids in liquids, solubility of gases in liquids, solid solutions, colligative properties-relative lowering of vapour pressure, elevation of Boiling Point, depression of freezing point, osmotic pressure, determination of molecular masses using colligative properties, abnormal molecular mass


Redox reactions, conductance in electrolytic solutions, specific and molar conductivity variations of conductivity with concentration, Kohlrausch's law, electrolysis and laws of electrolysis (elementary idea), dry cell electrolytic cells and Galvanic cells; lead accumulator, EMF of a cell, standard electrode potential, Nernst equation and its application to chemical cells, fuel cells; corrosion

Chemical Kinetics:

Rate of a reaction (average and instantaneous), factors affecting rates of reaction; concentration, temperature, catalyst; order and molecularity of a reaction; rate law and specific rate constant, integrated rate equations and half

life (only for zero and first order reactions); concept of collision theory (elementary idea, no mathematical treatment)

Surface Chemistry:

Adsorption - physisorption and chemisorption; factors affecting adsorption of gases on solids; catalysis: homogenous and heterogeneous, activity and selectivity: enzyme catalysis; colloidal state: distinction between true solutions, colloids and suspensions; lyophilic, lyophobic, multi-molecular and macromolecular colloids: properties of colloids; Tyndall effect, Brownian movement, electrophoresis, coagulation; emulsion - types of emulsions


General Principles and Processes of Isolation of Elements

Principles and methods of extraction - Concentration, oxidation, reduction electrolytic method and refining; occurrence and principles of extraction of aluminium, copper, zinc and Iron


p-Block Elements:

Group - 5 elements:

General introduction, electronic configuration, occurrence, oxidation states, trends in physical

and chemical properties; nitrogen - preparation, properties and uses; compounds of nitrogen: preparation, properties and uses; compounds of nitrogen: preparation and properties of ammonia and nitric acid, oxides of nitrogen (structure only); Phosphorous-allotropic forms; compounds of phosphorous: preparation and properties of phosphine, halides (PCl3, PCl5) and oxoacids (elementary idea only)

Group - 6 elements:

General introduction, electronic configuration, oxidation states, occurrence, trends in physical and chemical properties; dioxygen: preparation, properties and uses; simple oxdides; Ozone, Sulphur-allotropic forms; compounds of sulphur: preparation, properties and uses of sulphur dioxide; sulphuric acid: industrial process of manufacture, properties and uses, oxoacids of sulphur (structures only)

Group - 7 elements:

General introduction, electronic configuration, oxidation states, occurrence, trends in physical

and chemical properties; compounds of halogens; preparation, properties and uses of chlorine and hydrochloric acid, inter-halogen compounds, oxoacids of halogens (structures only)

Group - 8 elements:

General introduction, electronic configuration. Occurrence, trends in physical and chemical

properties, uses (Part-II)


d- and f- Block Elements:

General introduction, electronic configuration, occurrence and characteristics of transition metals, general trends in properties of the first row transition metals - metallic character, ionization enthalpy, oxidation states, ionic radii, colour, catalytic property, magnetic properties, interstitial compounds, alloy formation

Preparation and properties of K2Cr2O7 and KMnO4

Lanthanides: electronic configuration, oxidation states, chemical reactivity and lanthanide contraction.

Actinides: Electronic configuration, oxidation states

Coordination Compounds:

Introduction, ligands, coordination number, colour, magnetic properties and shapes,

IUPAC nomenclature of mononuclear coordination compounds, bonding; isomerism, importance of coordination

Compounds (in qualitative analysis, extraction of metals and biological systems)


Haloalkanes and Haloarenes

Haloalkanes: Nomenclature, nature of C-X bond, physical and chemical properties, mechanism of substitution reactions

Haloarenes: Nature of C-X bond, substitution reactions (directive influence of halogen for mono substituted compounds only)

Uses and environmental effects of - dichloromethane, tri-chloro-methane, tetra-chloro-methane, iodoform, freons, DDT


Alcohols, Phenols and Ethers

Alcohols: Nomenclature, methods of preparation, physical and chemical properties (of primary alcohols only); identification of primary, secondary and tertiary alcohols; mechanism of dehydration, uses of methanol and ethanol

Phenols: Nomenclature, methods of preparation, physical and chemical properties, acidic nature of phenol, electrophilic substitution reactions, uses of phenols

Ethers: Nomenclature, methods of preparation, physical and chemical properties, uses


Aldehydes, Ketones and Carboxylic acids

Aldehydes and Ketones: Nomenclature, nature of carbonyl group, methods of preparation, physical and chemical properties mechanism of nucleophilic addition, reactivity of alpha hydrogen in aldehydes; uses

Carboxylic Acids: Nomenclature, acidic nature, methods of preparation, physical and chemical properties; uses


Organic compounds containing Nitrogen

Amines: Nomenclature, classification, structure, methods of preparation, physical and chemical properties, uses, identification of primary, secondary and tertiary amines

Cyanides and Isocyanides will be mentioned at relevant places in context

Diazonium salts: Preparation, chemical reactions and importance in synthetic organic chemistry



Carbohydrates: Classification (aldoses and ketoses), monosaccharides (glucose and fructose), oligosaccharides (sucrose, lactose, maltose), polysaccharides (starch, cellulose, glycogen); importance

Proteins: Elementary idea of a - amino acids, peptide bond, polypeptides proteins, primary structure, secondary structure, tertiary structure and quaternary structure (qualitative idea only), denaturation of proteins; enzymes

Vitamins: Classification and functions

Nucleic Acids: DNA & RNA



Classification: Natural and synthetic, methods of polymerization (addition and condensation), copolymerization


Some important polymers: Natural and synthetic like polythene, nylon, polyesters, bakelite, rubber


Chemistry in Everyday life

1. Chemicals in medicines - analgesics, tranquilizers, antiseptics, disinfectants, antimicrobials, antifertility drugs, antibiotics, antacids, antihistamines.

2. Chemicals in food - preservatives, artificial sweetening agents

3. Cleansing agents - soaps and detergents, cleansing action

BCECE Syllabus 2019 for Biology


S. No


Detailed Syllabus


Diversity in Living world

Diversity of living organism

Classification of the living organisms (five kingdom classification, major groups principles of classification within each kingdom)

Systematics and binomial system of nomenclature

Salient features of animal (non-chordates up to phylum level, and chlordates up to class level) and plant (major

groups; Angiosperms up to subclass) classification

Botanical garden, herbaria, zoological parks museums


Structural Organisation in Animals and Plants

Tissues in animals and plants.

Morphology, anatomy and functions of different parts of flowering plants: Root, stem, leaf, inflorescence, flower,

Fruit and seed

Morphology, anatomy and functions of different systems of an annelid (earthworm), an insect (cockroach) and an

Amphibian (frog)


Cell: Structure and Function

Cell: Cell wall, cell membrane and cell organelles (plastids, mitochondria, endoplasmic reticulum, Golgi bodies/

dictyosomes, ribosomes, lysosomes, vacuoles, centrioles) and nuclear organisation

Mitosis, meiosis, cell cycle

Basis chemical constituents of living bodies

Structure and functions of carbohydrates, proteins, lipids and nucleic acids

Enzymes: Types, properties and function


Plant Physiology

Movement of water, food, nutrients and gases.

Plants and Water : Mineral nutrition



Plant growth and development


Human Physiology

Digestion and absorption

Breathing and respiration

Body fluids and circulation

Excretory products and elimination

Locomotion and movement

Control and coordination


Sexual Reproduction

Pollination and fertilization in flowering plants.

Development of seeds and fruits

Human reproduction: reproductive system in male and female, menstrual cycle. Production of gametes, fertilization,

Implantation, embryo development, pregnancy and parturition

Reproductive health-birth control, contraception and sexually transmitted diseases


Genetics and Evolution

Mendelian inheritance

Chromosome theory of inheritance, deviations from Mendelian ratio (gene interaction-Incomplete dominance, codominance, Complementary genes, multiple alleles )

Sex determination in human beings: XX, XY

Linkage and crossing over

Inheritance pattern of haemophilia and blood groups in human beings

DNA: replication, transcription, translation

Gene expression and regulation

Genome and Human Genome Project

DNA fingerprinting

Evolution: Theories and evidences


Biology and Human Welfare

Animal husbandry

Basic concepts of immunology, vaccines

Pathogens, Parasites

Plant breeding, tissue culture, food production

Microbes in household food processing, industrial production, sewage treatment and energy generation

Cancer and AIDS

Adolescence and drug/alcohol abuse


Biotechnology and its applications

Recombinant DNA technology

Applications in Health, Agriculture and Industry

Genetically modified (GM) organism; biosafety issues

Insulin and Bt cotton


Ecology and Environment

Ecosystems: components, types and energy flow

Species, population and community.

Ecological adaptations

Centres of diversity and conservation of biodiversity, national parks, and sanctuaries

Environmental issues

BCECE Syllabus 2019 for Physics 


S. No.


Detailed Syllabus


Physical world and measurement

Physics: scope and excitement, nature of physical laws; Physics, technology and society.

Need for measurement: Units of measurement, systems of units. S.I. units, fundamental and derived units, length, mass and time measurements, accuracy and precision of measuring instruments, errors in measurement, significant figures, regular and irregular errors.

Dimensions of physical quantities, dimensional analysis and its applications




Frame of reference, Motion in straight line, position time graph, speed and velocity. Uniform and non-uniform motion, average speed and instantaneous velocity.

Uniformly accelerated motion, velocity time and position time graphs, relations for uniformly accelerated motion

(graphical treatment) Elementary concepts of differentiation and integration for describing motion.

Scalar and vector quantities: Position and displacement vectors, general vectors and notation, equality of vectors, multiplication of vectors by a real number, addition and subtraction of vectors, relative velocity.

Unit vector, Resolution of a vector in a plane-rectangular components.

Motion in a plane, Cases of uniform velocity and uniform acceleration - projectile motion, uniform circular motion.


Laws of Motion


Intuitive concept of force, Inertia, Newton's first law of motion, momentum and Newton's Second law of motion, impulse, Newton's third law of motion, Law of conservation of linear momentum and its applications.

Equilibrium of concurrent forces, static and kinetic friction, laws of friction, rolling friction, lubrication, dynamics of uniform circular motion: centripetal force examples of circular motion (vehicle on level circular road, vehicle on banked road).


Work, Energy and Power


Scalar product of Vector work done by a constant force and a variable force, kinetic energy, work-energy theorem,

Power Notion of potential energy, potential energy of a spring, conservative forces; conservation of mechanical energy

(Kinetic and potential energies), non-conservative forces, elastic and inelastic collisions in one and two dimension.


Motion of System of Particles and Rigid body

Centre of mass of two-particle system, momentum, conservation and centre of mass motion, centre of mass of a rigid body, centre of mass of circular ring, disc, rod and sphere.

Vector product of vectors; momentum of a force, torque angular momentum, conservation of angular momentum with some examples.

Equilibrium of rigid bodies, rigid body rotation and equations of rotational motion, comparison of linear and rotational motion, moment of inertia, radius of gyration. Values of M.I. for simple geometrical objects (no derivation), statement of parallel and perpendicular axes theorems and their applications.




Kepler’s laws of planetary motion, The universal law of gravitation, Acceleration due to gravity and its variation with altitude and depth.

Gravitational potential energy, gravitational potential, escape velocity, orbital velocity of satellite, Geo-stationary satellites.


Properties of Bulk Matter


Elastic behaviour, stress-strain relationship, Hooke's law, Young's modulus, Bulk modulus, Deformation, Shear modulus of rigidity.

Pressure due to fluid column, pascal's law and its applications / hydraulic lift and hydraulic brakes).

Effect of gravity on fluid pressure, Viscosity, stokes’ law terminal velocity, Reynold's number, Streamline and turbulent flow, Bernoulli's theorem and its applications. Surface energy and surface tension, angle of contact, application of surface tension, ideas to drop bubbles and capillary rise


Heat and Thermodynamics


Heat, temperature, thermal expansion, specific heat capacity, Calorimetry, change of state, latent heat.

Heat transfer - conduction, convection and radiation, thermal conductivity, Newton's law of cooling.

Thermal equilibrium and definition of temperature (Zeroth law of thermodynamics). Heat, work and internal energy.

First law of thermodynamics.

Second law of thermodynamics, Reversible and irreversible processes. Heat engines and refrigerator.


Behaviour of Perfect Gas and Kinetic Theory


Equation of state of a perfect gas, work done on compressing a gas.

Kinetic theory of gases: Assumptions, concept of pressure, Kinetic energy and temperature, Rms speed of gas molecules, degrees of freedom, law of equipartition of energy (statement only) and application to specific heat capacities of gases, concept of mean free path, Avogadro's number.


Oscillations and Waves

Periodic motion - period, frequency, displacement as a function of time, periodic functions, simple harmonic motion

(SHM) and its equation, phase, oscillation of a spring - restoring force and force constant energy in SHM – Kinetic and potential energies, simple pendulum - derivation of expression for its time period) free, forced and damped oscillations (qualitative ideas only), resonance.

Wave motion, Longitudinal and transverse waves, speed of wave motion, Displacement relation for progressive waves, principle of superposition of waves, reflection of waves, standing waves in strings and organ pipes, fundamental mode and harmonics, Beats, Doppler effect.




Electric Charge; Conservation of charge, Coulomb's law-force between two point charges, forces between multiple charges; superposition principle and continuous charge distribution.

Electric field; electric field due to a point charge, electric field lines; electric dipole, electric field due to a dipole; torque on a dipole in uniform electric field.

Electric flux, statement of Gauss's theorem and its applications to find field due to infinitely long straight wire, uniformly charged infinite plane sheet and uniformly charged thin spherical shell (field inside and outside).

Electric potential, potential difference, electric potential due to a point charge, a dipole and system of charges;

Equipotential surfaces, electrical potential energy of a system of two point charges and of electric dipole in an electrostatic field.

Conductors and insulators, free charges and bound charges inside a conductor. Dielectrics and electric polarisation,

capacitors and capacitance, combination of capacitors in series and in parallel, capacitance of a parallel plate capacitor with and without dielectric medium between the plates, energy stored in a capacitor. Van de Graff generator.


Current Electricity


Electric current, flow of electric charges in a metallic conductor, drift velocity, mobility and their relation with electric current; Ohm's law, electrical resistance, V-I characteristics (linear and non-linear), electrical energy and power, electrical resistivity and conductivity. Carbon resistors, colour code for carbon resistors; series and parallel combinations of resistors; temperature dependence of resistance.

Internal resistance of a cell, potential difference and emf of a cell, combination of cells in series and in parallel.

Kirchhoff's laws and simple applications. Wheatstone bridge, metre bridge.

Potentiometer - principle and its applications to measure potential difference and for comparing emf of two cells; measurement of internal resistance of a cell.


Magnetic effects of current & Magnetism


Concept of magnetic field, Oersted's experiment.

Biot - Savart law and its application to current carrying circular loop.

Ampere's law and its applications to infinitely long straight wire, straight and toroidal solenoids.

Force on a moving charge in uniform magnetic and electric fields. Cyclotron.

Force on a current-carrying conductor in a uniform magnetic field. Force between two parallel current-carrying conductors-definition of ampere. Torque experienced by a current loop in uniform magnetic field, moving coil galvanometer-its current sensitivity and conversion to ammeter and voltmeter.

Current loop as a magnetic dipole and its magnetic dipole moment. Magnetic dipole moment of a revolving electron.

Magnetic field intensity due to a magnetic dipole (bar magnet) along its axis and perpendicular to its axis. Torque on a magnetic dipole (bar magnet) in a uniform magnetic field; bar magnet as an equivalent solenoid, magnetic field lines; Earth's magnetic field and magnetic elements. Para-, dia- and ferro- magnetic substances, with examples.

Electromagnets and factors affecting their strengths. Permanent magnets.


Electromagnetic Induction and Alternating currents


Electromagnetic induction; Faraday's law, induced emf and current; Lenz's Law, Eddy currents. Self and mutual inductance.

Need for displacement current.

Alternating currents, peak and rms value of alternating current/ voltage; reactance and impedance; LC oscillations (qualitative treatment only), LCR series circuit, resonance; power in AC circuits, wattless current.

AC generator and transformer.


Electromagnetic Waves


Electromagnetic waves and their characteristics (qualitative ideas only). Transverse nature of electromagnetic waves.

Electromagnetic spectrum (radio waves, microwaves, infrared, visible, ultraviolet, X-rays gamma rays) including elementary facts about their uses.




Reflection of light, spherical mirrors, mirror formula, Refraction of light, total internal reflection and its applications, optical fibres, refraction at spherical surfaces, lenses, thin lens formula, lens-maker's formula. Magnification, power of a lens, combination of thin lenses in contact, Refraction and dispersion of light through a prism.

Scattering of light-blue colour of the sky and reddish appearance of the sun at sunrise and sunset.

Optical instruments; Human eye, image formation and accommodation, correction of eye defects (myopia, hyper-metropia, presbyopia and astigmatism) using lenses. Microscopes and astronomical telescopes (reflecting and refracting) and their magnifying powers.

Wave optics: wave front and Huygens' principle, reflection and refraction of plane wave at a plane surface using wave fronts. Proof of laws of reflection and refraction using Huygens' principle. Interference, Young's double slit experiment and expression for fringe width, coherent sources and sustained interference of light. Diffraction due to a single slit, width of central maximum. Resolving power of microscopes and astronomical telescopes. Polarisation, plane polarised light; Brewster's law, uses of plane polarised light and Polaroids.


Dual Nature of Matter and Radiation


Photoelectric effect, Hertz and Lenard's observations; Einstein's photoelectric equation-particle nature of light.

Matter waves-wave nature of particles, de Broglie relation. Davission-Germer experiment.

Atoms and Nuclei

Alpha-particle scattering experiment; Rutherford's model of atom; Bohr model, energy levels, hydrogen spectrum.

Composition and size of nucleus, atomic masses, isotopes, isobars; isotones, Radioactivity-alpha, beta and gamma particles/rays and their properties; radioactive decay law. Mass-energy relation, mass defect; binding energy per nucleon and its variation with mass number; nuclear fission and fusion.


Electronic Devices


Semiconductors; semiconductor diode - I-V characteristics in forward and reverse bias, diode as a rectifier; I-V characteristics of LED, photodiode, solar cell, and Zener diode; Zener diode as a voltage regulator. Junction transistor, transistor action, characteristics of a transistor; transistor as an amplifier (common emitter configuration) and oscillator. Logic gates (OR, AND, NOT, NAND and NOR). Transistor as a switch.


Communication Systems


Elements of a communication system (block diagram only); bandwidth of signals (speech, TV and digital data); bandwidth of transmission medium. Propagation of electromagnetic waves in the atmosphere, sky and space wave propagation. Need for modulation. Production and detection of an amplitude-modulated wave.


Reviews & Comments about BCECE Medical 2019

Write your Comments & Queries about BCECE Medical