" /> -->

Trigonometry Model Question Paper

10th Standard EM

    Reg.No. :
  •  
  •  
  •  
  •  
  •  
  •  

Maths

Time : 01:00:00 Hrs
Total Marks : 50
    4 x 1 = 4
  1. If sinθ-cosθ=0, then the value of (sin4θ+cos4θ) is

    (a)

    1

    (b)

    \(\frac{3}{4}\)

    (c)

    \(\frac{1}{2}\)

    (d)

    \(\frac{1}{4}\)

  2. The value of sin2θ +\(\frac { 1 }{ 1+{ tan }^{ 2 }\theta } \) of

    (a)

    sin2θ

    (b)

    cos2θ

    (c)

    secθ

    (d)

    1

  3. (cosec2θ-cot2θ) (1-cos2θ) is equal to 

    (a)

    cosec θ

    (b)

    cos2θ

    (c)

    sec2θ

    (d)

    sin2θ

  4. 9 sec2A -9tam2A=

    (a)

    1

    (b)

    9

    (c)

    8

    (d)

    0

  5. 5 x 2 = 10
  6. \(1+\frac { { cot }^{ 2 }\alpha }{ 1+cosex\alpha } =cosec\alpha\)

  7. tan θ+tan(90o-θ)=secθ sec(90o-θ)

  8. Simplify (1+tan2θ)(1-sinθ)(1+sinθ)

  9. An observer 1.5 metres tall is 20.5 metres away from a tower 22 metres high. Determine the angle of elevation of the top of the tower from eye of the observer.

  10. Show that tan4θ+tan2θ=sec4θ-sec2θ.

  11. 4 x 5 = 20
  12. If sin (A - B) = \(\frac12\),  cos (A + B) = \(\frac12\), 0o < A + ≤  90°, A > B, find A and B.

  13. Express the ratios cos A, tan A and see A in terms-of sin A.

  14. If 15tan2 θ+4 sec2 θ=23 then find the value of (secθ+cosecθ)2 -sin2 θ

  15. The shadow of a tower, when the angle of elevation of the sum is 45o is found to be 10 metres, longer than when it is 60o. find the height of the tower

  16. 2 x 8 = 16
  17. Express cot 85° + cos 75° in terms of trigonometric ratios of angles between 0° and 45°.

  18. From a point on a bridge across a river, the angles of depression of the banks on opposite sides at the river are 30° and 45°, respectively. If the bridge is at a height at 3 m from the banks, find the width at the river.

*****************************************

Reviews & Comments about 10th Maths - Trigonometry Model Question Paper

Write your Comment