" /> -->

#### Algebra - One Mark Questions

10th Standard EM

Reg.No. :
•
•
•
•
•
•

Maths

Time : 00:30:00 Hrs
Total Marks : 10
10 x 1 = 10
1. A system of three linear equations in three variables is inconsistent if their planes

(a)

intersect only at a point

(b)

intersect in a line

(c)

coincides with each other

(d)

do not intersect

2. The solution of the system x + y − 3x = −6, −7y + 7z = 7 , 3z = 9 is

(a)

x = 1, y = 2, z = 3

(b)

x = −1, y = 2, z = 3

(c)

x = −1, y = −2, z = 3

(d)

x = 1, y = 2, z = 3

3. y2 + $\frac {1}{y^{2}}$ is not equal to

(a)

$\frac {y^{2} + 1}{y^{2}}$

(b)

${ \left( y+\frac { 1 }{ y } \right) }^{ 2 }$

(c)

${ \left( y-\frac { 1 }{ y } \right) }^{ 2 }+2$

(d)

${ \left( y+\frac { 1 }{ y } \right) }^{ 2 }-2$

4. The square root of $\frac { 256{ x }^{ 8 }{ y }^{ 4 }{ z }^{ 10 } }{ 25{ x }^{ 6 }{ y }^{ 6 }{ z }^{ 6 } }$ is equal to

(a)

$\frac { 16 }{ 5 } \left| \frac { { x }^{ 2 }{ z }^{ 4 } }{ { y }^{ 2 } } \right|$

(b)

$16\left| \frac { { y }^{ 2 } }{ { x }^{ 2 }{ z }^{ 2 } } \right|$

(c)

$\frac { 16 }{ 5 } \left| \frac { y }{ x{ z }^{ 2 } } \right|$

(d)

$\frac { 16 }{ 5 } \left| \frac { x{ z }^{ 2 } }{ y } \right|$

5. The solution of (2x - 1)2 = 9 is equal to

(a)

-1

(b)

2

(c)

-1, 2

(d)

None of these

6. The values of a and b if 4x4 - 24x3 + 76x2 + ax + b is a perfect square are

(a)

100, 120

(b)

10, 12

(c)

-120, 100

(d)

12, 10

7. Graph of a linear polynomial is a

(a)

straight line

(b)

circle

(c)

parabola

(d)

hyperbola

8. If number of columns and rows are not equal in a matrix then it is said to be a

(a)

diagonal matrix

(b)

rectangular matrix

(c)

square matrix

(d)

identity matrix

9. Transpose of a column matrix is

(a)

unit matrix

(b)

diagonal matrix

(c)

column matrix

(d)

row matrix

10. Find the matrix X if 2X + $\left( \begin{matrix} 1 & 3 \\ 5 & 7 \end{matrix} \right) =\left( \begin{matrix} 5 & 7 \\ 9 & 5 \end{matrix} \right)$

(a)

$\left( \begin{matrix} -2 & -2 \\ 2 & -1 \end{matrix} \right)$

(b)

$\left( \begin{matrix} 2 & 2 \\ 2 & -1 \end{matrix} \right)$

(c)

$\left( \begin{matrix} 1 & 2 \\ 2 & 2 \end{matrix} \right)$

(d)

$\left( \begin{matrix} 2 & 1 \\ 2 & 2 \end{matrix} \right)$