All Chapter 1 Marks

11th Standard

Reg.No. :
•
•
•
•
•
•

Business Maths

Time : 00:30:00 Hrs
Total Marks : 20
Choose The Correct Answer:
20 x 1 = 20
1. If A and B are non-singular matrices then, which of the following is incorrect?

(a)

A2 = Iimplies A-1 = A

(b)

I-1 = I

(c)

If AX = B, then X = B-1 A

(d)

If A is square matrix of order 3 then |adj A|= |A|2

2. If $\begin{vmatrix} 4 & 3 \\ 3 & 1 \end{vmatrix}=-5$ then value of $\begin{vmatrix} 20 & 15 \\ 15 & 5 \end{vmatrix}$ is

(a)

-5

(b)

-125

(c)

-25

(d)

0

3. If nC3 = nC2, then the value of nC4 is

(a)

2

(b)

3

(c)

4

(d)

5

4. The possible out comes when a coin is tossed five times

(a)

25

(b)

52

(c)

10

(d)

$\frac { 5 }{ 2 }$

5. The angle between the pair of straight lines x2 - 7xy + 4y2 = 0

(a)

$tan^{-1}\left(1\over 3\right)$

(b)

$tan^{-1}\left(1\over 2\right)$

(c)

$tan^{-1}\left(\sqrt{33}\over 5\right)$

(d)

$tan^{-1}\left(5\over\sqrt{33}\right)$

6. If kx2 + 3xy - 2y2 = 0 represent a pair of lines which are perpendicular then k is equal to

(a)

1/2

(b)

-1/2

(c)

2

(d)

-2

7. The degree measure of $\frac{\pi}{8}$ is

(a)

20o60'

(b)

22o30'

(c)

20o60'

(d)

20o30'

8. $\sec^{-1}\frac{2}{3}+cosec^{-1}\frac{2}{3}=$

(a)

$\frac{-\pi}{2}$

(b)

$\frac{\pi}{2}$

(c)

$\pi$

(d)

$-\pi$

9. The minimum value of the function f(x)= Ixl is

(a)

0

(b)

-1

(c)

+1

(d)

$-\infty$

10. $\lim _{ x\rightarrow \infty }{ \frac { \tan { \theta } }{ \theta } } =$

(a)

1

(b)

$\infty$

(c)

$-\infty$

(d)

$\theta$

11. Average fixed cost of the cost function C(x) = 2x3 +5x2 - 14x +21 is

(a)

$\frac { 2 }{ 3 }$

(b)

$\frac { 5}{ x }$

(c)

$\frac { -14 }{ x }$

(d)

$\frac { 21 }{ x }$

12. The maximum value of f(x)= sinx is

(a)

1

(b)

$\frac { \sqrt { 3 } }{ 2 }$

(c)

$\frac { 1 }{ \sqrt { 2 } }$

(d)

$-\frac { 1 }{ \sqrt { 2 } }$

13. A person brought a 9% stock of face value Rs 100, for 100 shares at a discount of 10%, then the stock purchased is

(a)

Rs 9000

(b)

Rs 6000

(c)

Rs 5000

(d)

Rs 4000

14. The present value of the perpetual annuity of Rs 2000 paid monthly at 10 % compound interest is

(a)

Rs 2,40,000

(b)

Rs 6,00,000

(c)

20,40,000

(d)

Rs 2,00,400

15. If median = 45 and its coefficient is 0.25, then the mean deviation about median is

(a)

11.25

(b)

180

(c)

0.0056

(d)

45

16. The two events A and B are mutually exclusive if

(a)

$P\left( A\cap B \right) =0$

(b)

$P\left( A\cap B \right) =1$

(c)

$P\left( A\cup B \right) =0$

(d)

$P\left( AUB \right) =1$

17. The regression coefficient of X on Y

(a)

bxy=$\frac { N\Sigma dxdy-(\Sigma dx)(\Sigma dy) }{ N\Sigma dy^{ 2 }-(\Sigma dy)^{ 2 } }$

(b)

byx=$\frac { N\Sigma dxdy-(\Sigma dx)(\Sigma dy) }{ N\Sigma dy^{ 2 }-(\Sigma dy)^{ 2 } }$

(c)

bxy=$\frac { N\Sigma dxdy-(\Sigma dx)(\Sigma dy) }{ N\Sigma dx^{ 2 }-(\Sigma dx)^{ 2 } }$

(d)

bxy=$\frac { N\Sigma xy-(\Sigma x)(\Sigma y) }{ \sqrt { N\Sigma { x }^{ 2 }-(\Sigma x)^{ 2 }\times \sqrt { N\Sigma y^{ 2 }-(\Sigma y)^{ 2 } } } }$

18. If two variables moves in decreasing direction then the correlation is

(a)

positive

(b)

negative

(c)

perfect negative

(d)

no correlation

19. One of the conditions for the activity (i, j) to lie on the critical path is

(a)

Ej-Ei=Lj-Li=tij

(b)

Ei-Ej=Lj-Li=tij

(c)

Ej-Ei=Li-Lj=tij

(d)

Ej-Ei=Lj-Li≠tij

20. The minimum value of the objective function Z = x + 3y subject to the constraints 2x + y ≤20, x + 2y ≤ 20,x > 0 and y > 0 is

(a)

10

(b)

20

(c)

0

(d)

5