Binomial Theorem, Sequences and Series Book Back Questions

11th Standard

    Reg.No. :
  •  
  •  
  •  
  •  
  •  
  •  

Maths

Time : 00:45:00 Hrs
Total Marks : 30
    5 x 1 = 5
  1. If a, 8, b are in AP, a, 4, b are in GP, and if a, x, b are in HP then x is

    (a)

    2

    (b)

    1

    (c)

    4

    (d)

    16

  2. The HM of two positive numbers whose AM and GM are 16,8 respectively is

    (a)

    10

    (b)

    6

    (c)

    5

    (d)

    4

  3. The nth term of the sequence \(\frac { 1 }{ 2 } ,\frac { 3 }{ 4 } ,\frac { 7 }{ 8 } ,\frac { 15 }{ 6 } \).+.....is

    (a)

    2n-n-1

    (b)

    1-2n

    (c)

    2-n+n-1

    (d)

    2n-1

  4. The coefficient of x5 in the series e-2x is

    (a)

    \(\frac { 2 }{ 3 } \)

    (b)

    \(\frac { 2 }{ 3 } \)

    (c)

    \(\frac { -4 }{ 15 } \)

    (d)

    \(\frac { 4 }{ 15 } \)

  5. The value of 2 + 4 + 6 + + 2n is

    (a)

    \(\frac { n\left( n-1 \right) }{ 2 } \)

    (b)

    \(\frac { n\left( n+1 \right) }{ 2 } \)

    (c)

    \(\frac { 2n\left( 2n-1 \right) }{ 2 } \)

    (d)

    n(n + 1)

  6. 3 x 2 = 6
  7. Compute 97

  8. Write the first 6 terms of the sequences whose nth term an given below
    \({ a }_{ n }=\begin{cases} n+1\quad if\quad n\quad is\quad odd \\ n\quad \quad if\quad n\quad is\quad even \end{cases}\)

  9. Find the middle terms in the expansion of (x +y)7.

  10. 3 x 3 = 9
  11. Expand the following in ascending powers of x and find the condition on x for which the binomial expansion is valid.
    \(\frac { 1 }{ 5+x } \)

  12. Write the first 6 terms of the sequences whose nth terms are given below and classify them as arithmetic progression, geometric progression, arithmetic geometric progression, harmonic progression and none of them \(\frac { \left( n+1 \right) \left( n+2 \right) }{ \left( n+3 \right) (n+4) } \)

  13. Expand \({1\over(1+3x)^2} \) in powers of x. Find a condition on x for which the expansion is valid.

  14. 2 x 5 = 10
  15. Find the value of n if the sum to n terms of the series \(\sqrt { 3 } +\sqrt { 75 } +\sqrt { 243 } +....is\quad 435\sqrt { 3 } .\)

  16. Find the sum of the first 20-terms of the arithmetic progression having the sum of first 10 terms as 52 and the sum of the first 15 terms as 77.

*****************************************

TN 11th Standard Maths free Online practice tests

Reviews & Comments about 11th Standard Maths - Binomial Theorem, Sequences and Series Book Back Questions

Write your Comment