#### 11th Standard Maths Binomial Theorem, Sequences and Series English Medium Free Online Test One Mark Questions 2020 - 2021

11th Standard

Reg.No. :
•
•
•
•
•
•

Maths

Time : 00:10:00 Hrs
Total Marks : 10

10 x 1 = 10
1. The HM of two positive numbers whose AM and GM are 16,8 respectively is

(a)

10

(b)

6

(c)

5

(d)

4

2. The sum of an infinite GP is 18. If the first term is 6, the common ratio is

(a)

$\frac { 1 }{ 3 }$

(b)

$\frac { 2 }{ 3 }$

(c)

$\frac { 1 }{ 6 }$

(d)

$\frac { 3 }{ 4 }$

3. If the sum of n terms of an A. P. be 3n2 - n and its common difference is 6, then its first term is

(a)

2

(b)

3

(c)

1

(d)

4

4. If in an infinite G. P., first term is equal to 10 times the sum of all successive terms, then its common ratio is

(a)

$\frac { 1 }{ 10 }$

(b)

$\frac { 1 }{ 11 }$

(c)

$\frac { 1 }{ 9 }$

(d)

$\frac { 1 }{ 20 }$

5. If $\Sigma n=210$ then $\Sigma { n }^{ 2 }$=

(a)

2870

(b)

2160

(c)

2970

(d)

none of these

6. $\frac{1}{1!}+\frac{1}{3!}+\frac{1}{5!}+...$is:

(a)

$\frac{e^{-1}}{2}$

(b)

$\frac{e+e^{-1}}{2}$

(c)

$\frac{e-e^{-1}}{2}$

(d)

none of these

7. The sum of the series C02- C12 + C22 .....+ (- 1)nC2n where n is an even integer is

(a)

2nCn

(b)

(-1)n2nCn

(c)

(-1)n2nCn-1

(d)

(-1)n/2nCn/2

8. 3 log 2 + $\frac{1}{4}-\frac{1}{2}(\frac{1}{4})^2+\frac{1}{3}(\frac{1}{4})^2$+ . . . =

(a)

log8

(b)

log10

(c)

log2

(d)

log4

9. The sum of the coefficients in the expansion of (1 - x)10 is

(a)

0

(b)

1

(c)

102

(d)

1024

10. If an A.P the sum of terms equidistant from the beginning and end is equal to

(a)

first term

(b)

second term

(c)

sum of first and last term

(d)

last term