#### 11th Standard Maths English Medium Free Online Test 1 Mark Questions 2020 - Part Eight

11th Standard

Reg.No. :
•
•
•
•
•
•

Maths

Time : 00:10:00 Hrs
Total Marks : 10

10 x 1 = 10
1. If A = {(x,y) : y = ex, x∈R} and B = {(x,y) : y = e-x, x ∈ R} then n(A∩B) is

(a)

Infinity

(b)

0

(c)

1

(d)

2

2. If A = {x / x is an integer, x2 $\le$ 4} then elements of A are ___________

(a)

A = {-1, 0, 1}

(b)

A = {-1, 0, 1, 2}

(c)

A = {0, 2, 4}

(d)

A = {- 2, - 1, 0, 1, 2}

3. Solve $\sqrt{7+6x-x^2}=x+1$

(a)

(1, -3)

(b)

(3, -1)

(c)

(1, -1)

(d)

(3, -3)

4. The value of log 1 is

(a)

1

(b)

0

(c)

$\infty$

(d)

-1

5. If $\Sigma n=210$ then $\Sigma { n }^{ 2 }$= ______________

(a)

2870

(b)

2160

(c)

2970

(d)

none of these

6. If a vertex of a square is at the origin and its one side lies along the line 4x + 3y - 20 = 0, then the area of the square is

(a)

20 sq. units

(b)

16 sq. units

(c)

25 sq. units

(d)

4 sq.units

7. The vector in the direction of the vector$\hat{i}-2\hat{j}+2\hat{k}$ that has magnitude 9 is _________ .

(a)

$\hat{i}-2\hat{j}+2\hat{k}$

(b)

$\frac { \hat { i } -2\hat { j } +2\hat { k } }{ 3 }$

(c)

3($\hat{i}-2\hat{j}+2\hat{k}$)

(d)

9($\hat{i}-2\hat{j}+2\hat{k}$)

8. Assertion (A) : $\overset { \rightarrow }{ a } ,\overset { \rightarrow }{ b } ,\overset { \rightarrow }{ c }$ are the position vector three collinear points then 2 $\overset { \rightarrow }{ a }=\overset { \rightarrow }{ b } +\overset { \rightarrow }{ c }$
Reason (R): Collinear points, have same direction

(a)

Both A and R are true and R is the correct explanation of A

(b)

Both A and R are true and R is not a correct explantion of A

(c)

A is true but R is false

(d)

A is false but R is true

9. If P(A)=$\frac { 1 }{ 2 }$, P(B)=$\frac { 1 }{ 3 }$ and P(A/B) = $\frac { 1 }{ 4 }$, then $P(\bar { A } \cap \bar { B } )$ =

(a)

$\frac { 1 }{ 12 }$

(b)

$\frac { 3 }{ 4 }$

(c)

$\frac { 1 }{ 4 }$

(d)

$\frac { 3 }{ 16 }$

10. Two dice are thrown. It is known that the sum of the numbers on the dice was less than 6, the probability of getting a sum 3 is

(a)

$\frac { 1 }{ 18 }$

(b)

$\frac { 5 }{ 18 }$

(c)

$\frac { 1 }{ 5 }$

(d)

$\frac { 2 }{ 5 }$