#### 11th Standard Maths English Medium Free Online Test 1 Mark Questions 2020 - Part Ten

11th Standard

Reg.No. :
•
•
•
•
•
•

Maths

Time : 00:10:00 Hrs
Total Marks : 10

10 x 1 = 10
1. $n(p(A))=512,n(p(B))=32,n(A\cup B)=16,$ find $n(A\cap B):$

(a)

2

(b)

9

(c)

4

(d)

5

2. If 3 is the logarithm of 343 then the base is

(a)

5

(b)

7

(c)

6

(d)

9

3. $\frac { cos3x }{ 2cos2x-1 }$ is

(a)

cos x

(b)

sin x

(c)

tan x

(d)

cot x

4. The number of positive integral solution of $x\times y\times z=30$ is

(a)

3

(b)

1

(c)

9

(d)

27

5. The sum of the digits in the unit's place of all the 4- digit numbers formed by 3, 4, 5 and 6, without repetition, is _______.

(a)

432

(b)

108

(c)

36

(d)

72

6. The value of ${ 9 }^{ \frac { 1 }{ 3 } }$ ,${ 9 }^{ \frac { 1 }{ 9 } }$${ 9 }^{ \frac { 1 }{ 27 } }$ ,$\infty$is

(a)

1

(b)

3

(c)

9

(d)

none of these

7. The locus of a point which is collinear with the points (a,0) and (0,b) is

(a)

x+y=1

(b)

$\frac{x}{a}+\frac{y}{b}=1$

(c)

x+y=ab

(d)

$\frac{x}{a}-\frac{y}{b}=1$

8. On using elementary row operation R1⟶R1-3R2 in the following matrix equation $\begin{pmatrix} 4 & 2 \\ 3 & 3 \end{pmatrix}=\begin{pmatrix} 1 & 2 \\ 0 & 3 \end{pmatrix}\begin{pmatrix} 2 & 0 \\ 1 & 1 \end{pmatrix}$

(a)

$\begin{pmatrix} -5 & -7 \\ 3 & 3 \end{pmatrix}=\begin{pmatrix} 1 & -7 \\ 0 & 3 \end{pmatrix}\begin{pmatrix} 2 & 0 \\ 1 & 1 \end{pmatrix}$

(b)

$\begin{pmatrix} -5 & -7 \\ 3 & 3 \end{pmatrix}=\begin{pmatrix} 1 & 2 \\ 0 & 3 \end{pmatrix}\begin{pmatrix} -1 & -3 \\ 1 & 1 \end{pmatrix}$

(c)

$\begin{pmatrix} -5 & -7 \\ 3 & 3 \end{pmatrix}=\begin{pmatrix} 1 & 2 \\ 1 & -7 \end{pmatrix}\begin{pmatrix} 2 & 0 \\ 1 & 1 \end{pmatrix}$

(d)

$\begin{pmatrix} 4 & 2 \\ -5 & -7 \end{pmatrix}=\begin{pmatrix} 1 & 2 \\ -3 & -3 \end{pmatrix}\begin{pmatrix} 2 & 0 \\ 1 & 1 \end{pmatrix}$

9. The value of the expression ${ \left| \overrightarrow { a } \times \overrightarrow { b } \right| }^{ 2 }+{ (\overrightarrow { a } .\overrightarrow { b } ) }^{ 2 }$ is

(a)

cos2 $\theta$

(b)

sin2 $\theta$

(c)

${ |\overrightarrow { a } | }^{ 2 }|{ \overrightarrow { b } | }^{ 2 }$

(d)

${ (|\overrightarrow { a } |+|\overrightarrow { b } |) }^{ 2 }$

10. $lim_{x \rightarrow 0}{e^{sin \ x}-1\over x}=$

(a)

1

(b)

e

(c)

${1\over e}$

(d)

0