#### 11th Standard Maths English Medium Free Online Test Book Back 1 Mark Questions with Answer Key - Part Two

11th Standard

Reg.No. :
•
•
•
•
•
•

Maths

Time : 00:10:00 Hrs
Total Marks : 10

10 x 1 = 10
1. The inverse of f(x)=$\begin{cases} x\quad if\quad x<1 \\ { x }^{ 2 }\quad if\quad 1\le x\le 4 \\ 8\sqrt { x } \quad if\quad x>4 \end{cases}$ is

(a)

${ f }^{ -1 }(x)=\begin{cases} x\quad if\quad x<1 \\ \sqrt { x } \quad if\quad 1\le x\le 16 \\ \frac { { x }^{ 2 } }{ 64 } \quad if\quad x>16 \end{cases}$

(b)

${ f }^{ -1 }(x)=\begin{cases} -x\quad if\quad x<1 \\ \sqrt { x } \quad if\quad 1\le x\le 16 \\ \frac { { x }^{ 2 } }{ 64 } \quad if\quad x>16 \end{cases}$

(c)

${ f }^{ -1 }(x)=\begin{cases} { x }^{ 2 }\quad if\quad x<1 \\ \sqrt { x } \quad if\quad 1\le x\le 16 \\ \frac { { x }^{ 2 } }{ 64 } \quad if\quad x>16 \end{cases}$

(d)

${ f }^{ -1 }(x)=\begin{cases} { 2x }\quad if\quad x<1 \\ \sqrt { x } \quad if\quad 1\le x\le 16 \\ \frac { { x }^{ 2 } }{ 8 } \quad if\quad x>16 \end{cases}$

2. If 8 and 2 are the roots of x2+ax+c=0 and 3,3 are the roots of x2+dx+b=0;then the roots of the equation x2+ax+b = 0 are

(a)

1,2

(b)

-1,1

(c)

9,1

(d)

-1,2

3. The product of r consecutive positive integers is divisible by

(a)

r!

(b)

(r-1)!

(c)

(r+1)!

(d)

rr

4. The sum up to n terms of the series $\frac { 1 }{ \sqrt { 1 } +\sqrt { 3 } } +\frac { 1 }{ \sqrt { 3 } +\sqrt { 5 } } +\frac { 1 }{ \sqrt { 5 } +\sqrt { 7 } } +$....is

(a)

$\sqrt { 2n+1 }$

(b)

$\frac { \sqrt { 2n+1 } }{ 2 }$

(c)

$\sqrt { 2n+1 } -1$

(d)

$\frac { \sqrt { 2n+1 } -1 }{ 2 }$

5. If a is the arithmetic mean and g is the geometric mean of two numbers, then

(a)

$\le$ g

(b)

$\ge$ g

(c)

a = g

(d)

a > g

6. The equation of the line with slope 2 and the length of the perpendicular from the origin equal to $\sqrt5$ is

(a)

x+2y=$\sqrt5$

(b)

2x+y=$\sqrt5$

(c)

2x+y=5

(d)

x+2y-5=0

7. $\theta$ is acute angle between the lines x2-xy- 6y2 = 0, then $\frac{2\cos\theta+3\sin\theta}{4\sin\theta+5\cos\theta}$ is

(a)

1

(b)

$-\frac{1}{9}$

(c)

$\frac{5}{9}$

(d)

$\frac{1}{9}$

8. If 7x2 - 8xy +A = 0 represents a pair of perpendicular lines, the A is

(a)

7

(b)

-7

(c)

-8

(d)

8

9. If $\triangle$=$\begin{vmatrix} a&b &c \\ x & y & z \\ p &q &r \end{vmatrix}$ ,then $\begin{vmatrix} ka&kb &kc \\ kx & ky & kz \\k p &kq &kr \end{vmatrix}$is

(a)

$\triangle$

(b)

k$\triangle$

(c)

3k$\triangle$

(d)

k3$\triangle$

10. $lim_{x \rightarrow \infty}{\sqrt{x^2-1}\over 2x+1}=$

(a)

1

(b)

0

(c)

-1

(d)

$1\over 2$