#### 11th Standard Maths English Medium Free Online Test Creative 1 Mark Questions - Part Five

11th Standard

Reg.No. :
•
•
•
•
•
•

Maths

Time : 00:10:00 Hrs
Total Marks : 10

10 x 1 = 10
1. Let X = {a, b,c},y = (1,2,3) then $f:x\rightarrow y$ given by (a, 1) (b, 1) (c, 1) is called:

(a)

onto

(b)

constant function

(c)

one one

(d)

bijective

2. Which one of the following is false?

(a)

(A')' = A

(b)

AUA' = A

(c)

A⋂A' = Ø

(d)

AUA' = U

3. The logarithmic form of 52=25 is

(a)

${ log }_{ 5 }^{ 2 }=25$

(b)

${ log }_{ 2 }^{ 5 }=25$

(c)

${ log }_{ 2 }^{ 25 }=2$

(d)

${ log }_{ 25 }^{ 5 }=2$

4. If 15C3r=15 Cr+3 , then r is equal to

(a)

5

(b)

4

(c)

3

(d)

2

5. nCr + 2nCr-1 + nCr-2

(a)

n+1Cr

(b)

(n+1)Cr+1

(c)

(n+2)Cr

(d)

n+2Cr+1

6. The sum of the digits in the unit's place of all the 4- digit numbers formed by 3, 4, 5 and 6, without repetition, is _______.

(a)

432

(b)

108

(c)

36

(d)

72

7. Which one of the following statements in false?

(a)

A point $(\alpha,\beta)$ will lie on origin side of the line ax+by+c=0 if a$\alpha$+b$\beta$+c and c have the same sign

(b)

A point $(\alpha,\beta)$  will lie on non-origin side of the line ax+by+c=0 if a$\alpha$+b$\beta$ +c and c have opposite sign

(c)

If $\alpha=\frac{\pi}{2},p=0$ , then the equation xcos$\alpha$+ysin$\alpha$=p represents x-axis

(d)

If $\alpha =0,p=0$, then the equation xcos$\alpha$+ysin$\alpha$=presents x-axis

8. Find the odd one out of the following:

(a)

$\begin{bmatrix} 0 & 2 \\ -2 & 0 \end{bmatrix}$

(b)

$\begin{bmatrix} 0 & \frac { -7 }{ 2 } \\ \frac { 7 }{ 2 } & 0 \end{bmatrix}$

(c)

$\begin{bmatrix} 0 & 3.2 \\ -3.2 & 0 \end{bmatrix}$

(d)

$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$

9. Find the odd one out of the following

(a)

$\hat { i } +2\hat { j } +3\hat { k }$

(b)

$2\hat { i } +4\hat { j } +6\hat { k }$

(c)

$7\hat { i } +14\hat { j } +21\hat { k }$

(d)

$\hat { i } +3\hat { j } +2\hat { k }$

10. $\lim _{ x\rightarrow \infty }{ \frac { 1+2+3+....+n }{ { 2n }^{ 2 }+6 } }$

(a)

2

(b)

6

(c)

$\frac { 1 }{ 4 }$

(d)

$\frac { 1 }{ 2 }$