#### 11th Standard Maths English Medium Free Online Test One Mark Questions with Answer Key 2020

11th Standard

Reg.No. :
•
•
•
•
•
•

Maths

Time : 00:10:00 Hrs
Total Marks : 10

10 x 1 = 10
1. If $x={1\over 2+\sqrt{3}}$ then the value of x3 - x2 - 11x + 3 is

(a)

0

(b)

1

(c)

2

(d)

4

2. If sinα + cosα = b, then sin2α is equal to

(a)

b2-1, if b≤$\sqrt { 2 }$

(b)

b2-1, if b>$\sqrt { 2 }$

(c)

b2-1, if b ≥ 1

(d)

b2-1, if b≥$\sqrt { 2 }$

3. If 10 lines are drawn in a plane such that no two of them are parallel and no three are concurrent, then the total number of points of intersection are

(a)

45

(b)

40

(c)

10!

(d)

210

4. The number of positive integral solution of $x\times y\times z=30$ is

(a)

3

(b)

1

(c)

9

(d)

27

5. Which one of the following statements in false?

(a)

A point $(\alpha,\beta)$ will lie on origin side of the line ax+by+c=0 if a$\alpha$+b$\beta$+c and c have the same sign

(b)

A point $(\alpha,\beta)$  will lie on non-origin side of the line ax+by+c=0 if a$\alpha$+b$\beta$ +c and c have opposite sign

(c)

If $\alpha=\frac{\pi}{2},p=0$ , then the equation xcos$\alpha$+ysin$\alpha$=p represents x-axis

(d)

If $\alpha =0,p=0$, then the equation xcos$\alpha$+ysin$\alpha$=presents x-axis

6. The distance between the parallel lines 3x-4y+9=0 and 6x-8y-15=0 is

(a)

$\frac{-33}{10}$

(b)

$\frac{10}{33}$

(c)

$\frac{33}{10}$

(d)

$\frac{33}{20}$

7. A vector $\overrightarrow{OP}$ makes 60° and 45° with the positive direction of the x and y axes respectively.  Then the angle between $\overrightarrow{OP}$and the z-axis is

(a)

45°

(b)

60°

(c)

90°

(d)

30°

8. If the direction cosines of a line are k, k and k, then

(a)

k>0

(b)

0<k<1

(c)

k=1

(d)

$k=\frac { 1 }{ \sqrt { 3 } } or-\frac { 1 }{ \sqrt { 3 } }$

9. $\int {dx\over e^x-1}$is

(a)

$log|e^x|-log|e^x-1|+c$

(b)

$log|e^x|+log|e^x-1|+c$

(c)

$log|e^x-1|-log|e^x|+c$

(d)

$log|e^x+1|-log|e^x|+c$

10. $\int { \frac { { e }^{ x } }{ \left( 1+{ e }^{ x } \right) ^{ 2 } } }$ dx =_______+c

(a)

$\frac { 1 }{ 1+{ e }^{ x } }$

(b)

-$\frac { 1 }{ 1+{ e }^{ x } }$

(c)

1 + ex

(d)

$\frac { \left( 1+{ e }^{ x } \right) ^{ 3 } }{ 3 }$