#### 11th Standard Maths English Medium Free Online Test One Mark Questions with Answer Key 2020 - Part Six

11th Standard

Reg.No. :
•
•
•
•
•
•

Maths

Time : 00:10:00 Hrs
Total Marks : 10

10 x 1 = 10
1. If two sets A and B have 17 elements in common, then the number of elements common to the set A x B and B x A is

(a)

217

(b)

172

(c)

34

(d)

insufficient data

2. Which one of the following statements is false? The graph of the function $f(x)={1\over x}$

(a)

exist is the first and third quadrant only

(b)

is a reciprocal function

(c)

is defined at x = 0

(d)

it is symmetric about y = x and y = - x.

3. If |x+3| ≥10 then

(a)

x ∊ (-13,7]

(b)

x ∊ [-13,7)

(c)

x ∊ (-∞,-13] ᴗ [7,∞)

(d)

x ∊ (-∞,-13] ᴗ [7,∞)

4. The quadratic equation whose roots are tan75° and cot75° is:

(a)

x2+4x+ 1 =0

(b)

4x2-x+ 1 =0

(c)

4x2+ 4x - 1 = 0

(d)

x2 - 4x + 1 = 0

5. If 10n + 3 $\times$ 4n+2+$\lambda$ is divisible by 9 for all n $\in$N, then the least positive integral value of $\lambda$ is

(a)

5

(b)

3

(c)

7

(d)

1

6. The number of integers greater than 6000 that can be formed, using the digits 3, 5, 6, 7 and 8 without repetition

(a)

216

(b)

192

(c)

120

(d)

72

7. The sum of the digits in the unit's place of all the 4- digit numbers formed by 3, 4, 5 and 6, without repetition, is _______.

(a)

432

(b)

108

(c)

36

(d)

72

8. $\frac{2}{1!}+\frac{4}{3!}+\frac{6}{5!}+. . .\infty =$

(a)

e

(b)

2e

(c)

$\frac{1}{e}$

(d)

e2

9. If the square of the matrix $\begin{bmatrix} \alpha & \beta \\ \gamma & -\alpha \end{bmatrix}$ is the unit matrix of order 2, then$\alpha ,\beta$ and $\gamma$ should satisfy the relation.

(a)

1+$\alpha ^2+\beta \gamma=0$

(b)

1-$\alpha ^2-\beta \gamma=0$

(c)

1-$\alpha ^2+\beta \gamma=0$

(d)

1+$\alpha ^2-\beta \gamma=0$

10. If the projection of $5\hat{i}-\hat{j}-3\hat{k}$ on the vector $\hat{i}+3\hat{j}+\lambda\hat{k}$ is same as the projection of $\hat{i}+3\hat{j}+\lambda\hat{k}$ on $5\hat{i}-\hat{j}-3\hat{k}$then $\lambda$ is equal to

(a)

$\pm 4$

(b)

$\pm 3$

(c)

$\pm 5$

(d)

$\pm 1$