#### 11th Standard Maths English Medium Free Online Test One Mark Questions with Answer Key 2020 - Part Ten

11th Standard

Reg.No. :
•
•
•
•
•
•

Maths

Time : 00:10:00 Hrs
Total Marks : 10

Answer all the questions

10 x 1 = 10
1. If $f:R\rightarrow R$ is defined by $f(x)=2x-3:$

(a)

${1\over 2x-3}$

(b)

${1\over 2x+3}$

(c)

${x+3\over 2}$

(d)

${x-3\over 2}$

2. The triangle of maximum area with constant perimeter 12m

(a)

is an equilateral triangle with side 4m

(b)

is an isosceles triangle with sides 2m;5m;5m

(c)

is a triangle with sides 3m;4m;5m

(d)

Does not exist

3. tan 70°-tan 20°=

(a)

tan 50°

(b)

2 tan 50°

(c)

tan 70°

(d)

0

4. The product of first n odd natural numbers equals

(a)

2nCn$\times$nPn

(b)

${ \left( \frac { 1 }{ 2 } \right) }^{ n }$2nCn$\times$nPn

(c)

${ \left( \frac { 1 }{ 4 } \right) }^{ n }\times$2nCn$\times$2nPn

(d)

nCn $\times$nPn

5. The middle term in the expansion of  is $(x- \frac{2}{x})^{12}$ is

(a)

12C6

(b)

12C626

(c)

12C7

(d)

12C627

6. If the square of the matrix $\begin{bmatrix} \alpha & \beta \\ \gamma & -\alpha \end{bmatrix}$ is the unit matrix of order 2, then$\alpha ,\beta$ and $\gamma$ should satisfy the relation.

(a)

1+$\alpha ^2+\beta \gamma=0$

(b)

1-$\alpha ^2-\beta \gamma=0$

(c)

1-$\alpha ^2+\beta \gamma=0$

(d)

1+$\alpha ^2-\beta \gamma=0$

7. Find the odd one out of the following:

(a)

$\begin{bmatrix} 0 & 2 \\ -2 & 0 \end{bmatrix}$

(b)

$\begin{bmatrix} 0 & \frac { -7 }{ 2 } \\ \frac { 7 }{ 2 } & 0 \end{bmatrix}$

(c)

$\begin{bmatrix} 0 & 3.2 \\ -3.2 & 0 \end{bmatrix}$

(d)

$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$

8. Choose the incorrect pair

(a)

330o$\frac{11\pi}{6}$radians

(b)

$\frac{7\pi^c}{3}$ - 200o

(c)

0o - 0c

(d)

2$\pi$c - 360o

9. $\int { \frac { \left( 1+logx \right) ^{ 2 } }{ x } }$ dx = _______+C.

(a)

$\frac { \left( 1+logx \right) ^{ 3 } }{ 3 }$

(b)

3 log ( 1 + log x)

(c)

2(1 + log x)

(d)

none of these

10. The probability that in a year of 22nd century, chosen at random there will be 53 Sundays is

(a)

$\frac { 3 }{ 28 }$

(b)

$\frac { 2 }{ 28 }$

(c)

$\frac { 7 }{ 28 }$

(d)

$\frac { 5 }{ 28 }$