#### 11th Standard Maths English Medium Free Online Test Volume 1 One Mark Questions 2020

11th Standard

Reg.No. :
•
•
•
•
•
•

Maths

Time : 00:25:00 Hrs
Total Marks : 25

25 x 1 = 25
1. If A={1,2,3}, B={1,4,6,9} and R is a relation from A to B defined by "x is greater than y". The range of R is

(a)

{1,4,6,9}

(b)

{4,6,9}

(c)

{1}

(d)

None of these

2. The relation R defined on a set A= {0,-1, 1, 2} by xRy if |x2+y2| ≤ 2, then which one of the following is true?

(a)

R = {(0,0), (0,-1), (0, 1), (-1, 0), (-1, 1), (1, 2), (1, 0)}

(b)

R-1 = {(0,0), (0,-1), (0, 1), (-1, 0), (1, 0)}

(c)

Domain of R is {0,-1, 1, 2}

(d)

Range of R is {0,-1, 1}

3. The domain of the function $f(x)=\sqrt{log_{10}{3-x\over x}}$is

(a)

$(0,{3\over2})$

(b)

(0, 3)

(c)

$(-\infty, {3\over2}]$

(d)

$(0, {3\over2}]$

4. The domain and range of the function $f(x)={|x-4|\over x-4}$

(a)

R, [-1, 1]

(b)

R \ {4};{-1,1}

(c)

R \ {4};{-1,l}

(d)

R, (-1,1)

5. The value of ${ log }_{ 3 }\frac { 1 }{ 81 }$ is

(a)

-2

(b)

-8

(c)

-4

(d)

-9

6. $\sqrt [ 4 ]{ 11 }$ is equal to

(a)

$\sqrt [ 8 ]{ 11^{ 2 } }$

(b)

$\sqrt [ 8 ]{ 11^{ 4 } }$

(c)

$\sqrt [ 8 ]{ 11^{ 8 } }$

(d)

$\sqrt [ 8 ]{ 11^{ 6 } }$

7. The roots of the equation $x+{1\over x}=3{1\over 3},x\ne 0$ are

(a)

1, 3

(b)

${1\over 3},3$

(c)

$3,{-1\over 3}$

(d)

$1,{1\over 3}$

8. cos10+cos20+cos30+: : :+cos1790=

(a)

0

(b)

1

(c)

-1

(d)

89

9. If sinθ=sin$\alpha$, then the angles θ and $\alpha$ are related by

(a)

$\theta=n\pi\pm\alpha$

(b)

$\theta=2n\pi+(-1)^n\alpha$

(c)

$\alpha=n\pi\pm(-1)^n\theta$

(d)

$\theta=(2n+1)\pi+\alpha$

10. If cosA=cosB and sinA=sinB then

(a)

A+B=0

(b)

A=B

(c)

A+B=2nπ

(d)

A=B+2nπ

11. Choose the incorrect pair:

(a)

(b)

cos x in Ist quadrant 1

(c)

sec x in IIst quadrant -2

(d)

12. The number of parallelograms that can be formed from a set of four parallel lines intersecting another set of three parallel lines.

(a)

6

(b)

9

(c)

12

(d)

18

13. There are 10 points in a plane and 4 of them are collinear. The number of straight lines joining any two of them is

(a)

45

(b)

40

(c)

39

(d)

38

14. The number of 4 digit numbers, that can be formed by the digits 3, 4, 5, 6, 7, 8, 0 and no digit is being repeated is

(a)

720

(b)

840

(c)

280

(d)

560

15. The sum up to n terms of the series $\sqrt { 2 } +\sqrt { 8 } +\sqrt { 18 } +\sqrt { 32 } +$.....is

(a)

$\frac { n(n+1) }{ 2 }$

(b)

2n(n+1)

(c)

$\frac { n(n+1) }{ \sqrt { 2 } }$

(d)

1

16. The series 1+4x+8x2+$\frac { 32 }{ 3 } { x }^{ 3 }+.....+\infty \quad is$

(a)

ex

(b)

e4x

(c)

e2x

(d)

e8x

17. The larget coefficients in the expansion of (1 + X)24 is

(a)

24C24

(b)

24C13

(c)

24C12

(d)

24C11

18. If the co-efficient of x in ${ \left( { x }^{ 2 }+\frac { \lambda }{ x } \right) }^{ 5 }$ is 270, then $\lambda$ =

(a)

3

(b)

4

(c)

5

(d)

6

19. Straight line joining the points (2, 3) and (-1, 4) passes through the point $(\alpha,\beta)$ if

(a)

$\alpha+2\beta=7$

(b)

$3\alpha+\beta=9$

(c)

$\alpha+3\beta=11$

(d)

$3\alpha+\beta=11$

20. The area of the triangle formed by the lines x2 - 4y2 = 0 and x = a is

(a)

2a2

(b)

$\frac{\sqrt3}{2}a^2$

(c)

$\frac12a^2$

(d)

$\frac{2}{\sqrt3}a^2$

21. Slope of X-axis or a line parallel to X-axis is

(a)

0

(b)

positive

(c)

negative

(d)

infinity

22. The distance between the line 12x - 5y + 9 = 0 and the point (2, 1) is

(a)

$\pm\frac{28}{13}$

(b)

$\frac{28}{13}$

(c)

$-\frac{28}{13}$

(d)

none of these

23. The co-ordinates of the foot of the perpendicular drawn from the point (2,3) to the line 3x-y+4=0 is

(a)

$(\frac{1}{10},\frac{37}{10})$

(b)

$(\frac{-1}{10},-\frac{37}{10})$

(c)

$(\frac{-1}{10},\frac{37}{10})$

(d)

$(\frac{37}{10},\frac{-1}{10})$

24. If h2=ab, then the lines represented by ax2+2hx+by2=0 are

(a)

parallel

(b)

perpendicular

(c)

coincident

(d)

None

25. If one of the lines by 6x2-xy+4cy2=0 is 3x+4y=0, then c=

(a)

1

(b)

-1

(c)

3

(d)

-3