Matrices and Determinants One Mark Questions

11th Standard

    Reg.No. :
  •  
  •  
  •  
  •  
  •  
  •  

Maths

Time : 00:30:00 Hrs
Total Marks : 10
    10 x 1 = 10
  1. If aij =\({1\over2}(3i-2j)\) and A=[aij]2x2 is

    (a)

    \(\begin{bmatrix} {1\over 2}& 2 \\ -{1\over2} & 1 \end{bmatrix}\)

    (b)

    \(\begin{bmatrix} {1\over 2}& -{1\over2} \\ 2& 1 \end{bmatrix}\)

    (c)

    \(\begin{bmatrix} 2& 2\\ {1\over 2}& -{1\over2} \end{bmatrix}\)

    (d)

    \(\begin{bmatrix} -{1\over 2}& {1\over2} \\ 1& 2 \end{bmatrix}\)

  2. Which one of the following is not true about the matrix \(\begin{bmatrix} 1 &0 &0 \\ 0 & 0 &0 \\ 0 & 0 & 5 \end{bmatrix}?\)

    (a)

    a scalar matrix

    (b)

    a diagonal matrix

    (c)

    an upper triangular matrix

    (d)

    a lower triangular matrix

  3. If A=\(\begin{bmatrix}\lambda & 1 \\ -1 & -\lambda \end{bmatrix}\) ,then for what value of \(\lambda\), A2 = O?

    (a)

    0

    (b)

    \(\pm 1\)

    (c)

    -1

    (d)

    1

  4. If A=\(\begin{bmatrix} 1& 2 &2 \\ 2 & 1 & -2 \\ a & 2 & b \end{bmatrix}\) is a matrix satisfying the equation AAT = 9I, where I is 3 × 3 identity matrix, then the ordered pair (a, b) is equal to

    (a)

    (2, - 1)

    (b)

    (- 2, 1)

    (c)

    (2, 1)

    (d)

    (- 2, - 1)

  5. The product of any matrix by the scalar____________is the null matrix.

    (a)

    1

    (b)

    0

    (c)

    I

    (d)

    matrix itself

  6. If \(\begin{bmatrix} 2x+y & 4x \\ 5x-7 & 4x \end{bmatrix}=\begin{bmatrix} 7 & 7y-13 \\ y & x+6 \end{bmatrix}\), then the value of x+y is

    (a)

    5

    (b)

    6

    (c)

    4

    (d)

    3

  7. On using elementary row operation R1⟶R1-3R2 in the following matrix equation \(\begin{pmatrix} 4 & 2 \\ 3 & 3 \end{pmatrix}=\begin{pmatrix} 1 & 2 \\ 0 & 3 \end{pmatrix}\begin{pmatrix} 2 & 0 \\ 1 & 1 \end{pmatrix}\)

    (a)

    \(\begin{pmatrix} -5 & -7 \\ 3 & 3 \end{pmatrix}=\begin{pmatrix} 1 & -7 \\ 0 & 3 \end{pmatrix}\begin{pmatrix} 2 & 0 \\ 1 & 1 \end{pmatrix}\)

    (b)

    \(\begin{pmatrix} -5 & -7 \\ 3 & 3 \end{pmatrix}=\begin{pmatrix} 1 & 2 \\ 0 & 3 \end{pmatrix}\begin{pmatrix} -1 & -3 \\ 1 & 1 \end{pmatrix}\)

    (c)

    \(\begin{pmatrix} -5 & -7 \\ 3 & 3 \end{pmatrix}=\begin{pmatrix} 1 & 2 \\ 1 & -7 \end{pmatrix}\begin{pmatrix} 2 & 0 \\ 1 & 1 \end{pmatrix}\)

    (d)

    \(\begin{pmatrix} 4 & 2 \\ -5 & -7 \end{pmatrix}=\begin{pmatrix} 1 & 2 \\ -3 & -3 \end{pmatrix}\begin{pmatrix} 2 & 0 \\ 1 & 1 \end{pmatrix}\)

  8. The value of\(\left| \begin{matrix} 1 & 1 & 1 \\ 1 & 1+sin\theta & 1 \\ 1 & 1 & 1+cos\theta \end{matrix} \right| \) is

    (a)

    3

    (b)

    1

    (c)

    2

    (d)

    \(\frac{1}{2}\)

  9. If \(\left( \begin{matrix} 2 & \lambda & -3 \\ 0 & 2 & 5 \\ 1 & 1 & 3 \end{matrix} \right) \) is a singular matrix, then \(\lambda \) is

    (a)

    \(\lambda \)=2

    (b)

    \(\lambda \)≠2

    (c)

    \(\lambda =\frac { -8 }{ 5 } \)

    (d)

    \(\lambda \neq \frac { -8 }{ 5 } \)

  10. If f(x)=\(\left| \begin{matrix} 0 & x-a & x-b \\ x+a & 0 & x-c \\ x+b & x+c & 0 \end{matrix} \right| \)  then

    (a)

    f(a)=0

    (b)

    f(b)=0

    (c)

    f(0)=0

    (d)

    f(1)=0

*****************************************

TN 11th Standard Maths free Online practice tests

Reviews & Comments about 11th Standard Maths - Matrices and Determinants One Mark Question and Answer

Write your Comment