Applications of Matrices and Determinants Important Question Paper

12th Standard EM

    Reg.No. :
  •  
  •  
  •  
  •  
  •  
  •  

Business Maths

Time : 01:00:00 Hrs
Total Marks : 50
    10 x 1 = 10
  1. If A=(1 2 3), then the rank of AAT is

    (a)

    0

    (b)

    2

    (c)

    3

    (d)

    1

  2. The rank of m×n matrix whose elements are unity is

    (a)

    0

    (b)

    1

    (c)

    m

    (d)

    n

  3. if T=\(_{ B }^{ A }\left( \begin{matrix} \overset { A }{ 0.4 } & \overset { B }{ 0.6 } \\ 0.2 & 0.8 \end{matrix} \right) \) is a transition probability matrix, then at equilibrium A is equal to

    (a)

    \(\frac { 1 }{ 4 } \)

    (b)

    \(\frac { 1 }{ 5 } \)

    (c)

    \(\frac { 1 }{ 6 } \)

    (d)

    \(\frac { 1 }{ 8 } \)

  4. if T= \(_{ B }^{ A }\left( \begin{matrix} \overset { A }{ 0.7 } & \overset { B }{ 0.3 } \\ 0.6 & x \end{matrix} \right) \) is a transition probability matrix, then the value of x is

    (a)

    0.2

    (b)

    0.3

    (c)

    0.4

    (d)

    0.7

  5. Which of the following is not an elementary transformation?

    (a)

    \({ R }_{ i }\leftrightarrow { R }_{ j }\)

    (b)

    \({ R }_{ i }\rightarrow { 2R }_{ i }+{ 2c }_{ j }\)

    (c)

    \({ R }_{ i }\rightarrow { 2R }_{ i }-{ 4R }_{ i }\)

    (d)

    \({ C }_{ i }\rightarrow { C }_{ i }+{ 5C }_{ j }\)

  6. if \(\left| A \right| \neq 0,\) then A is

    (a)

    non- singular matrix

    (b)

    singular matrix

    (c)

    zero matrix

    (d)

    none of these

  7. For what value of k, the matrix \(A=\left( \begin{matrix} 2 & k \\ 3 & 5 \end{matrix} \right) \) has no inverse?

    (a)

    \(\cfrac { 3 }{ 10 } \)

    (b)

    \(\cfrac { 10 }{ 3 } \)

    (c)

    3

    (d)

    10

  8. The rank of an n x n matrix each of whose elements is 2 is

    (a)

    1

    (b)

    2

    (c)

    n

    (d)

    n2

  9. The value of \(\left| \begin{matrix} { 5 }^{ 2 } & { 5 }^{ 3 } & { 5 }^{ 4 } \\ { 5 }^{ 3 } & { 5 }^{ 4 } & { 5^{ 5 } } \\ { 5 }^{ 4 } & { 5 }^{ 5 } & { 5 }^{ 6 } \end{matrix} \right| \)

    (a)

    52

    (b)

    0

    (c)

    513

    (d)

    59

  10. If \(\left| \begin{matrix} 2x & 5 \\ 8 & x \end{matrix} \right| =\left| \begin{matrix} 6 & -2 \\ 7 & 3 \end{matrix} \right| \) then x =

    (a)

    3

    (b)

    ± 3

    (c)

    ± 6

    (d)

    6

  11. 5 x 2 = 10
  12. Find the rank of the following matrices.
    \(\left( \begin{matrix} 5 & 6 \\ 7 & 8 \end{matrix} \right) \)

  13. If A=\(\left( \begin{matrix} 1 & 1 & -1 \\ 2 & -3 & 4 \\ 3 & -2 & 3 \end{matrix} \right) \) and B=\(\left( \begin{matrix} 1 & -2 & 3 \\ -2 & 4 & -6 \\ 5 & 1 & -1 \end{matrix} \right) \), then find the rank of AB and the rank
    of BA.

  14. Solve the following system of equations by rank method
    x+y+z=9,2x+5y+7z=52,2x−y−z =0

  15. Find the rank of the matrix \(\left[ \begin{matrix} 7 & -1 \\ 2 & 1 \end{matrix} \right] \)

  16. Find the rank of the matrix \(\left( \begin{matrix} 2 & -4 \\ -1 & 2 \end{matrix} \right) \)

  17. 5 x 3 = 15
  18. Find the rank of the matrix \(\begin{pmatrix} 1 & 5 \\ 3 & 9 \end{pmatrix}\)
     

  19. Find the rank of the matrix \(\begin{pmatrix} -5 & -7 \\ 5 & 7 \end{pmatrix}\)

  20. Find the rank of the matrix \(\left( \begin{matrix} 0 & -1 & 5 \\ 2 & 4 & -6 \\ 1 & 1 & 5 \end{matrix} \right) \)
     

  21. Find the rank of the matrix
    \(A=\left( \begin{matrix} 2 & 4 & 5 \\ 4 & 8 & 10 \\ -6 & -12 & -15 \end{matrix} \right) \)

  22. Findtherankofthematrix \(A=\left( \begin{matrix} 1 & 2 & -4 \\ 2 & -1 & 3 \\ 8 & 1 & 9 \end{matrix}\begin{matrix} 5 \\ 6 \\ 7 \end{matrix} \right) \)

  23. 3 x 5 = 15
  24. Solve the equations 2x + 3y = 7, 3x + 5y = 9 by Cramer’s rule.

  25. The following table represents the number of shares of two companies A and B
    during the month of January and February and it also gives the amount in rupees invested
    by Ravi during these two months for the purchase of shares of two companies. Find the
    the price per share of A and B purchased during both the months
     

    Months Number of Shares of
    the company
    Amount invested by Ravi
    (in Rs)
    A B
    January 10 5 125
    February 9 12 150

     

  26. The sum of three numbers is 6. If we multiplythe third number by 2 and add the first number to the result we get 7. By adding second and third numbers to three times the first number we get 12. Find the numbers using rank method

*****************************************

TN 12th Standard EM Business Maths free Online practice tests

Reviews & Comments about 12th Business Maths - Applications of Matrices and Determinants Important Question Paper

Write your Comment