" /> -->

#### Integral Calculus – II One Mark Questions

12th Standard EM

Reg.No. :
•
•
•
•
•
•

Time : 00:30:00 Hrs
Total Marks : 15
10 x 1 = 10
1. Area bounded by the curve y = x (4 − x) between the limits 0 and 4 with x − axis is

(a)

$\frac{30}{3}$ sq.units

(b)

$\frac{31}{3}$sq.units

(c)

$\frac{32}{3}$ sq.units

(d)

$\frac{15}{2}$ sq.units

2. Area bounded by the curve y = e−2x between the limits 0 ≤ x ≤ ∞ is

(a)

1 sq.units

(b)

$\frac{1}{2}$ sq.unit

(c)

5 sq.units

(d)

2 sq.units

3. The given demand and supply function are given byD(x) = 20 − 5x and S(x) = 4x + 8 if they are under perfect competition then the equilibrium demand is

(a)

40

(b)

$\frac{41}{2}$

(c)

$\frac{40}{3}$

(d)

$\frac{41}{5}$

4. If the marginal revenue MR = 35 + 7x − 3x2, then the average revenue AR is

(a)

35x + $\frac { 7{ x }^{ 2 } }{ 2 } -{ x }^{ 3 }$

(b)

35x - $\frac { 7{ x }^{ 2 } }{ 2 } -{ x }^{ 2 }$

(c)

35 +$\frac { 7{ x }^{ 2 } }{ 2 } +{ x }^{ 2 }$

(d)

35 + 7x + x2

5. The profit of a function p(x) is maximum when

(a)

MC − MR = 0

(b)

MC = 0

(c)

MR = 0

(d)

MC + MR = 0

6. The area bounded by y = 2x - x2 and X-axis is _________ sq. units

(a)

$\frac{2}{3}$

(b)

$\frac{4}{3}$

(c)

2

(d)

4

7. The area of the region bounded by the ellipse

(a)

$\pi$ab sq.units

(b)

$\frac{\pi a}{b}$ sq.units

(c)

2$\pi$ab sq.unit

(d)

$\frac{\pi}{2}$ ab sq.units

8. The area unded by the curves y = 2x, x = 0 anx=2 is________sq.units.

(a)

loge2

(b)

3loge2

(c)

$\frac{3}{log_e2}$

(d)

2loge3

9. The area of the region bounded by the line 2y = -x + 8, X - axis and the lines x = 2 and x = 4 is ________ sq.units.

(a)

$\frac{1}{5}$

(b)

$\frac{2}{5}$

(c)

5

(d)

$\frac{5}{2}$

10. The area enclosed by the curve y = cos2x in [0,$\pi$] the lines x=0, x=$\pi$ and the X-axis is ________sq.units.

(a)

2$\pi$

(b)

2$\pi$

(c)

$\frac{2}{\pi}$

(d)

$\frac{\pi}{2}$

11. 5 x 1 = 5
12. Cost function

13. (1)

Total revenue

14. Average cost function

15. (2)

x

16. MC

17. (3)

$\frac{dc}{dx}$

18. Output

19. (4)

$\frac{c}{x}$, x≠0

20. R

21. (5)

ഽmc dx+k