" /> -->

#### 12th Standard Business Maths English Medium Free Online Test Creative One Mark Questions with Answer Key - Part Three

12th Standard EM

Reg.No. :
•
•
•
•
•
•

Time : 00:10:00 Hrs
Total Marks : 10

10 x 1 = 10
1. If A, B are two n x n non-singular matrices, then

(a)

AB is non-singular

(b)

AB is singular

(c)

(AB)-I = A-1 B-1

(d)

(AB)-1I does not exit

2. $\int { { e }^{ x } }$ f(x) + f' (x) dx = _____________ +c

(a)

ex f(x)

(b)

ex + f(x)

(c)

2ex f(x)

(d)

ex - f(x)

3. The area of the region bounded by the line y = 3x + 2, the X-axis and the ordinates x = - 1 and x = 1is_________ sq. units.

(a)

$\frac{13}{3}$

(b)

13

(c)

$\frac{26}{3}$

(d)

$\frac{3}{13}$

4. The differential equation obtained by eliminating a and b from y = a e3x + b e-3x is

(a)

$\frac { { d }^{ 2 }y }{ dx^{ 2 } }$+ay=0

(b)

$\frac { { d }^{ 2 }y }{ dx^{ 2 } }$-9y=0

(c)

$\frac { { d }^{ 2 }y }{ dx^{ 2 } } -9\frac { dy }{ dx }$

(d)

$\frac { { d }^{ 2 }y }{ dx^{ 2 } }$+9x=0

5. Δ(f(x) + g(x)) = ________

(a)

Δf(x) + Δg(x)

(b)

f(x) ± Δg(x)

(c)

f(x) Δ g(x)

(d)

g(x). Δf(x)

6. X is a random variable. Taking the values 3, 4 and 12 with probabilities $\frac{1}{3},\frac{1}{4}$and $\frac{5}{12}$.Then E(X) is

(a)

5

(b)

7

(c)

6

(d)

3

7. If Z is a standard normal variate, then p(0<Z<∞) is

(a)

0.5

(b)

1

(c)

0.25

(d)

0.75

8. Which of the following statements is true?

(a)

point estimate gives a range of value

(b)

sampling is done only to estimate a statistic

(c)

sampling is done to estimate the population parameter

(d)

sampling is not possible for an infinite population

9. The normal equations for estimating a and b so that the line y = ax + b may be the line of best fit are

(a)

aΣx2 + bΣx = Σxy, aΣx + nb = Σy

(b)

aΣx + bΣx2 = Σxy, aΣx2 + nb = Σy

(c)

aΣx + nb = Σxy, aΣx2 + bΣx = Σy

(d)

aΣx2 + nb = Σxy, aΣx + bΣx = Σy

10. To assign different jobs to the different machines to minimize the overall cost is

(a)

transportation problem

(b)

assignment problem

(c)

minimax principle

(d)

maximin principle