" /> -->

#### 12th Standard Business Maths English Medium Free Online Test Creative One Mark Questions with Answer Key - Part Two

12th Standard EM

Reg.No. :
•
•
•
•
•
•

Time : 00:10:00 Hrs
Total Marks : 10

10 x 1 = 10
1. If $\left| \begin{matrix} 2x & 5 \\ 8 & x \end{matrix} \right| =\left| \begin{matrix} 6 & -2 \\ 7 & 3 \end{matrix} \right|$ then x =

(a)

3

(b)

± 3

(c)

± 6

(d)

6

2. $\int { \frac { 2 }{ { \left( { e }^{ x }+{ e }^{ -x } \right) }^{ 2 } } }$ dx = ____________ +c

(a)

$\frac { { -e }^{ -x } }{ { e }^{ x }+{ e }^{ -x } }$

(b)

$-\frac { { -e }^{ -x } }{ { e }^{ x }+{ e }^{ -x } }$

(c)

$\frac { 1 }{ { \left( { e }^{ x }+1 \right) }^{ 2 } }$

(d)

$\frac { 1 }{ { e }^{ x }-{ e }^{ -x } }$

3. The area of the region bounded by the line 2y = -x + 8, X - axis and the lines x = 2 and x = 4 is ________ sq.units.

(a)

$\frac{1}{5}$

(b)

$\frac{2}{5}$

(c)

5

(d)

$\frac{5}{2}$

4. The differential equation satisfied by all the straight lines in xy plane is

(a)

$\frac { dy }{ dx }$=a constant

(b)

$\frac { { d }^{ 2 }y }{ dx^{ 2 } }$=0

(c)

y+ $\frac { dy }{ dx }$ = 0

(d)

$\frac { { d }^{ 2 }y }{ dx^{ 2 } }$+y=0

5. Δ can be defined as Δf(x) =f(x + h) -f(x) where h is the __________ interval of spacing

(a)

equal

(b)

unequal

(c)

equal & unequal

(d)

equal or unequal

6. X is a discrete random variable. Which take values 0,1,2 and P(X = 0)=$\frac{144}{169}$, P(X=1)=$\frac{1}{169}$, then the value of P(X=2) is

(a)

$\frac{145}{169}$

(b)

$\frac{24}{169}$

(c)

$\frac{2}{169}$

(d)

$\frac{143}{169}$

7. In a poison distribution, mean is 16, then standard deviation is

(a)

4

(b)

128

(c)

256

(d)

20

8. The standard error of the sample mean is

(a)

Type I error

(b)

Type II error

(c)

Standard deviation of the sampling distribution of the mean

(d)

Variance of the sampling distribution of the mean.

9. An additive model of time series with the components T, S, C and I is

(a)

y = T + S + C - I

(b)

y = T + S x C + I

(c)

y = T + S + C + I

(d)

y = T + S + C x I

10. Vogel's approximation method yields an initial basic feasible solution which is very close to the solution.

(a)

maximum

(b)

minimum

(c)

optimum

(d)

unique