#### Important 1 Mark Creative Questions (New Syllabus) 2020

12th Standard

Reg.No. :
•
•
•
•
•
•

Time : 00:25:00 Hrs
Total Marks : 28

Part A

28 x 1 = 28
1. If $\left| \begin{matrix} 2x & 5 \\ 8 & x \end{matrix} \right| =\left| \begin{matrix} 6 & -2 \\ 7 & 3 \end{matrix} \right|$ then x =

(a)

3

(b)

± 3

(c)

± 6

(d)

6

2. If $\int { \frac { 1 }{ \left( x+2 \right) \left( { x }^{ 2 }+1 \right) } }$ dx = a log $\left| 1+{ x }^{ 2 } \right|$ +b tan-1 x + $\frac { 1 }{ 5 } log\left| x+2 \right|$ +c then ___________

(a)

$a=-\frac { 1 }{ 10 } ,b=\frac { -2 }{ 5 }$

(b)

$a=\frac { 1 }{ 10 } ,b=\frac { -2 }{ 5 }$

(c)

$a=-\frac { 1 }{ 10 } ,b=\frac { 2 }{ 5 }$

(d)

$a=\frac { 1 }{ 10 } ,b=\frac { 2 }{ 5 }$

3. ∫ e3 log x (x4 +1)-1 dx = ____________ +c

(a)

$\log { \left| { x }^{ 4 }+1 \right| }$

(b)

$4\log { \left| { x }^{ 4 }+1 \right| }$

(c)

-4 log |x4 +1|

(d)

$\frac { 1 }{ 4 } \log { \left| { x }^{ 4 }+1 \right| }$

4. $\int { \frac { 1 }{ 1+sinx } }$ dx = ____________ +c

(a)

tan x - sec x

(b)

sec x - tan x

(c)

- tan x - sec x

(d)

tan x +sec x

5. $\int _{ 1 }^{ 4 }{ f\left( x \right) } dx,$ where f(x) =  $\begin{cases} 7x+3\quad if\quad 1\le x\le 3 \\ 8x\quad if\quad 3\le x\le 4 \end{cases}$ is _____________.

(a)

58

(b)

60

(c)

62

(d)

52

6. The area of the region bounded by the line y = 3x + 2, the X-axis and the ordinates x = - 1 and x = 1is_________ sq. units.

(a)

$\frac{13}{3}$

(b)

13

(c)

$\frac{26}{3}$

(d)

$\frac{3}{13}$

7. The Consumer's surplus for the demand function P =f(x) for the quantity Xo and price Po is_________

(a)

$\int _{ 0 }^{ x0 }{ f(x)dx-{ p }_{ 0 }{ x }_{ 0 } }$

(b)

$\int _{ 0 }^{ x0 }{ f(x)dx }$

(c)

p0x0-$\int _{ 0 }^{ x0 }{ g(x)dx }$

(d)

$\int _{ 0 }^{ p0 }{ f(x)dx }$

8. The area below the demand curve p = f(x) and above the line p = po is________.

(a)

Producer's Surplus

(b)

Consumer's Surplus

(c)

$\int _{ 0 }^{ p0 }{ g(x)dx }$

(d)

$\int _{ 0 }^{ x0 }{ g(x)dx }$

9. The differential equation satisfied by all the straight lines in xy plane is _____________

(a)

$\frac { dy }{ dx }$=a constant

(b)

$\frac { { d }^{ 2 }y }{ dx^{ 2 } }$=0

(c)

y+ $\frac { dy }{ dx }$ = 0

(d)

$\frac { { d }^{ 2 }y }{ dx^{ 2 } }$+y=0

10. The solution of $\frac { dy }{ dx }$ = ex-y is _____________

(a)

eyex = c

(b)

y=log cex

(c)

y=log(ex+c)

(d)

ex+y = c

11. The solution of $\frac { d^{ 2 }y }{ dx^{ 2 } }$ - y = 0 is _____________

(a)

(A+B)ex

(b)

(Ax+B)e-x

(c)

Aex+$\frac { B }{ e^{ x } }$

(d)

(A+Bx)e-x

12. The equation of ydx + xdy = e-xy dx if it cuts the Y-axis is ______

(a)

exy

(b)

exy = c

(c)

exy = x + 1

(d)

exy = y + 1

13. Δ[f{x) . g(x)] = __________

(a)

Δf(x). Δg(x)

(b)

f(x) . Δg(x) + g(x) .Δf(x)

(c)

f(x) . Δg(x)

(d)

f(Δx) . g(Δx)

14.  The nationality of the mathematician Joseph Louis Laguange is _________

(a)

German

(b)

Spain

(c)

Italian

(d)

French

15. In Newtons forward and backward interpolation formula, the first two terms will give the __________ interpolation

(a)

linear

(b)

parabolic

(c)

(d)

cubic

16. Given E(X + c) = 8 and E(X - c) = 12, then the value of c is ___________

(a)

-2

(b)

4

(c)

-4

(d)

2

17. If F(x) is the probability distribution function, then F(- ∞) is_______.

(a)

1

(b)

2

(c)

(d)

0

18. If F(x) is the probability distribution function, then F(- ∞) is_______.

(a)

1

(b)

2

(c)

(d)

0

19. Which of the following are correct?
(i) E(aX+b) = a E(X) + b
(ii) μ2= μ21 - (μ11)2
(iii) μ2= variance
(iv) V (a X + b) = a2 V(x)

(a)

all

(b)

i, ii and iii

(c)

ii and iii

(d)

i and iv

20. In a binomial distribution if the mean is 8 and the variance is 6, then the number of trials is ___________

(a)

32

(b)

48

(c)

16

(d)

12

21. In a binomial distribution, n = 4, p(X = 0) = $\frac{16}{81}$, then p(X = 4) is ___________

(a)

$\frac{1}{16}$

(b)

$\frac{1}{81}$

(c)

$\frac{1}{27}$

(d)

$\frac{1}{8}$

22. For a standard normal distribution, the mean and variance are _________

(a)

μ,σ2

(b)

μ,σ

(c)

0,1

(d)

1,1

23. The standard error of the sample mean is __________

(a)

Type I error

(b)

Type II error

(c)

Standard deviation of the sampling distribution of the mean

(d)

Variance of the sampling distribution of the mean.

24. The point estimate variance of 21, 25, 20, 16, 12, 10, 17, 18, 13 and 11 is _______

(a)

23.5

(b)

2.35

(c)

4.85

(d)

48.5

25. The normal equations for estimating a and b so that the line y = ax + b may be the line of best fit are __________

(a)

aΣx2 + bΣx = Σxy, aΣx + nb = Σy

(b)

aΣx + bΣx2 = Σxy, aΣx2 + nb = Σy

(c)

aΣx + nb = Σxy, aΣx2 + bΣx = Σy

(d)

aΣx2 + nb = Σxy, aΣx + bΣx = Σy

26. Seasonal variations are __________

(a)

Selling of umbrellas in rainy season

(b)

cool drinks in summer season

(c)

(d)

Sugarcane in Pongal

27. The optimum_______schedule remains, unaltered if we add or subtract a constant from all the elements of the row or which of the cost________matrix.

(a)

transportation

(b)

assignment

(c)

unique

(d)

optimal

28. The penalty is the difference between the ___ costs in each row and column.

(a)

smallest

(b)

biggest

(c)

minimum

(d)

least