Trigonometry Model Question Paper

9th Standard

    Reg.No. :
  •  
  •  
  •  
  •  
  •  
  •  

Maths

Time : 01:30:00 Hrs
Total Marks : 50
    11 x 1 = 11
  1. if sin 300 = x and cos 600 = y, then x2  + y2 is

    (a)

    \(\frac { 1 }{ 2 } \)

    (b)

    0

    (c)

    sin90°

    (d)

    cos90°

  2. If tan\(\theta\) cot370 , then the value of \(\theta\) is

    (a)

    370

    (b)

    530

    (c)

    900

    (d)

    10

  3. The value of tan72°.tan18° is

    (a)

    0

    (b)

    1

    (c)

    180

    (d)

    720

  4. The value of \(\frac { tan15° }{ cot75° } \) is

    (a)

    cos900

    (b)

    sin300

    (c)

    tan450

    (d)

    cos300

  5. if sin \(\alpha\) = \(\frac { 1 }{ 2 } \) and \(\alpha\) is a cute, then (3 cos\(\alpha\) - 4cos3 \(\alpha\)) is equal to

    (a)

    0

    (b)

    \(\frac { 1 }{ 2 } \)

    (c)

    \(\frac { 1 }{ 6 } \)

    (d)

    -1

  6. The value of 3sin700sec200 + 2sin490sec510 is

    (a)

    2

    (b)

    3

    (c)

    5

    (d)

    6

  7. The value of \(\frac { 1-{ tan }^{ 2 }{ 45 }^{ 0 } }{ 1+{ tan }^{ 2 }{ 45 }^{ 0 } } \)

    (a)

    2

    (b)

    1

    (c)

    0

    (d)

    \(\frac { 1 }{ 2 } \)

  8. The value of cosec(700 + \(\theta\)) - sec(200 - \(\theta\)) + tan(650 + \(\theta\)) - cot(250 - \(\theta\)) is

    (a)

    0

    (b)

    1

    (c)

    2

    (d)

    3

  9. The value of tan1°.tan2°.tan3°...tan89° is

    (a)

    0

    (b)

    1

    (c)

    2

    (d)

    \(\frac { \sqrt { 3 } }{ 2 } \)

  10. Given that sin \(\alpha\) = \(\frac { 1 }{ 2 } \) and cos \(\beta\) = \(\frac { 1 }{ 2 } \), then the value of \(\alpha\) + \(\beta\) is

    (a)

    00

    (b)

    900

    (c)

    300

    (d)

    600

  11. The value of \(\frac { sin{ 29 }^{ 0 }31' }{ cos{ 60 }^{ 0 }29' } \) is

    (a)

    0

    (b)

    2

    (c)

    1

    (d)

    -1

  12. 10 x 2 = 20
  13. From the given figure, find the values of  (i) sinB (ii) secB (iii) cot B  (iv) cosC (v) tanC (vi) cosecC

  14. If 2cos \(\theta\) = \(\sqrt { 3 } \), then find all the trigonometric ratios of angle \(\theta\)

  15. If cos A = \(\frac { 2x }{ 1+{ x }^{ 2 } } \) then find the values of sinA and tanA in terms of x.

  16. If 3cot A = 2 , then find the value of = \(\frac { 4sinA-3cosA }{ 2sinA+3cosA } \)

  17. From the given figure, prove that \(\theta +\phi =90°\) Also prove that there are two other right  angled triangles. Find sin\(\alpha\) , cos\(\beta\) and tan\(\phi \)  

  18. Verify the following equalities :
    sin2600 + cos2600 = 1

  19. Verify cos3A = 4cos3 A - 3cosA , when A = 300

  20. Find the value of 8sin2x.cos 4x.sin6x , when x =150

  21. Find the area of a right triangle whose hypotenuse is 10cm and one of the acute angle is 24024'

  22. In the given figure, HT shows the height of a tree standing vertically. From a point P, the angle of elevation of the top of the tree (that is \( )  measures 42° and the distance to the tree is 60 metres. Find the height of the tree.

  23. 3 x 3 = 9
  24. For the measures in the figure, compute sine, cosine and tangent ratios of the angle \(\theta \)
     

  25. If tan A  = \(\frac { 2 }{ 3 } \) , then find all the other trigonometric ratios.

  26. Find the value of sin 64034'.

  27. 2 x 5 = 10
  28. Find the values of the following:
    (i) (cos00 + sin450 + sin300)(sin900 - cos450 + cos600)
    (ii) tan2600 - 2tan2450 - cot2300 +2sin2300\(\frac { 3 }{ 4 } \) cosec2 450

  29. Find the value of \(\theta\) if
    (i) sin \(\theta\) = 0.9858
    (ii)tan \(\theta\) = 0.5902
    (iii)cos\(\theta\) = 07656

*****************************************

Reviews & Comments about 9th Maths - Trigonometry Model Question Paper

Write your Comment