Matrices And Determinants Two Marks Question

11th Standard

    Reg.No. :
  •  
  •  
  •  
  •  
  •  
  •  

Business Maths

Time : 00:45:00 Hrs
Total Marks : 30
    15 x 2 = 30
  1. The technology matrix of an economic system of two industries is\(\begin{bmatrix} 0.6 & 0.9 \\ 0.20 & 0.80 \end{bmatrix}\) .Test whether the system is viable as per Hawkins-Simon conditions.

  2. Find the minors and cofactors of all the elements of the following determinants
    \(\begin{vmatrix}5&20\\ 0&-1 \end{vmatrix}\)

  3. Solve: \(\begin{vmatrix}2& x&3\\4&1&6\\1&2&7 \end{vmatrix}=0\)

  4. Find |AB| if \(A=\begin{bmatrix} 3&-1\\2&1 \end{bmatrix}and \begin{bmatrix} 3&0\\1&-2 \end{bmatrix}\)

  5. If A \(=\begin{bmatrix} 1 \\ -4\\3 \end{bmatrix}\) and  B = [-1 2 1], verify that (AB)T = BT. AT.

  6. Evaluate \(\begin{vmatrix} 2 &-1 &-2 \\0 & 2 & -1\\3 & -5& 0 \end{vmatrix}.\)

  7. Find the values of x if \(\begin{vmatrix} 2 & 4 \\5 & 1 \end{vmatrix}=\begin{vmatrix} 2x & 4\\6 & x \end{vmatrix}.\)

  8. Using the property of determinant, evaluate \(\begin{vmatrix} 6 &5 &12 \\ 2 & 4 &4 \\2 & 1 & 4 \end{vmatrix}.\)

  9. Using the property of determinants show that \(\begin{vmatrix} x &a &x+a \\ y & b &y+b \\z & c & z+c \end{vmatrix}=0.\)

  10. Evaluate:\(\left| \begin{matrix} 2 & 4 \\ -1 & 4 \end{matrix} \right| \)

  11. Evaluate:\(\left| \begin{matrix} 1 & 2 & 4 \\ -1 & 3 & 0 \\ 4 & 1 & 0 \end{matrix} \right| \)

  12. Show that\(\left| \overset { x }{ 2x\underset { a }{ + } 2a } \quad \overset { y }{ 2y\underset { b }{ + } 2b } \quad \overset { z }{ 2z\underset { c }{ + } 2c } \right| =0\)

  13. Solve\(\left| \begin{matrix} x-1 & x & x-2 \\ 0 & x-2 & x-3 \\ 0 & 0 & x-3 \end{matrix} \right| =0\)

  14. Show that \(\left[ \begin{matrix} 1 & 2 \\ 2 & 4 \end{matrix} \right] \)is a singular matrix.

  15. If \(A=\left| \begin{matrix} -2 & 6 \\ 3 & -9 \end{matrix} \right| \)then, find A-1

*****************************************

TN 11th Standard Business Maths free Online practice tests

Reviews & Comments about 11th Business Maths - Matrices And Determinants Two Marks Question

Write your Comment