#### 11th Public Exam March 2019 Important One Mark Test

11th Standard

Reg.No. :
•
•
•
•
•
•

Time : 02:30:00 Hrs
Total Marks : 120
120 x 1 = 120
1. The value of $\begin{vmatrix} 2x+y & x & y \\ 2y+z & y & z \\ 2z+x & z & x \end{vmatrix}$ is

(a)

xyz

(b)

x+y+z

(c)

2x+2y+2z

(d)

0

2. If $\triangle=\begin{vmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \\ 2 & 3 & 1 \end{vmatrix}$ then $\begin{vmatrix} 3 & 1 & 2 \\ 1 & 2 & 3 \\ 2 & 3 & 1 \end{vmatrix}$ is

(a)

$\triangle$

(b)

-$\triangle$

(c)

3$\triangle$

(d)

-3$\triangle$

3. The value of the determinant ${\begin{vmatrix} a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & c \end{vmatrix}}^{2}$is

(a)

abc

(b)

0

(c)

a2b2c2

(d)

-abc

4. adj (AB) is equal to

(a)

(b)

(c)

(d)

5. The inverse matrix of $\begin{pmatrix} \frac { 1 }{ 5 } & \frac { 5 }{ 25 } \\ \frac { 2 }{ 5 } & \frac { 1 }{ 2 } \end{pmatrix}$ is

(a)

${{7}\over{30}}\begin{pmatrix} \frac { 1 }{ 2 } & \frac { 5 }{ 12 } \\ \frac { 2 }{ 5 } & \frac { 4 }{ 5 } \end{pmatrix}$

(b)

${{7}\over{30}}\begin{pmatrix} \frac { 1 }{ 2 } & \frac { -5 }{ 12 } \\ \frac { -2 }{ 5 } & \frac { 1 }{ 5 } \end{pmatrix}$

(c)

${{30}\over{7}}\begin{pmatrix} \frac { 1 }{ 2 } & \frac { 5 }{ 12 } \\ \frac { 2 }{ 5 } & \frac { 4 }{ 5 } \end{pmatrix}$

(d)

${{30}\over{7}}\begin{pmatrix} \frac { 1 }{ 2 } & \frac { -5 }{ 12 } \\ \frac { -2 }{ 5 } & \frac { 4 }{ 5 } \end{pmatrix}$

6. The number of Hawkins-Simon conditions for the viability of an input - output analysis is

(a)

1

(b)

3

(c)

4

(d)

2

7. The inventor of input-output analysis is

(a)

Sir Francis Galton

(b)

Fisher

(c)

Prof. Wassily W. Leontief

(d)

Arthur Caylay

8. Which of the following matrix has no inverse

(a)

$\begin{pmatrix} -1 & 1 \\ 1 &-4 \end{pmatrix}$

(b)

$\begin{pmatrix} 2 & -1 \\ -4 &2 \end{pmatrix}$

(c)

$\begin{pmatrix} cos\ a & sin\ a \\ -sin\ a & cos\ a \end{pmatrix}$

(d)

$\begin{pmatrix} sin\ a & cos\ a \\ -cos\ a & sin\ a \end{pmatrix}$

9. If A $=\begin{pmatrix} -1 & 2 \\ 1 & -4 \end{pmatrix}$ then A (adj A) is

(a)

$\begin{pmatrix} -4 & -2 \\ -1 & -1 \end{pmatrix}$

(b)

$\begin{pmatrix} 4 & -2 \\ -1 & 1 \end{pmatrix}$

(c)

$\begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$

(d)

$\begin{pmatrix} 0 & 2 \\ 2 & 0 \end{pmatrix}$

10. If A is an invertible matrix of order 2, then det (A-1) be equal to

(a)

det (A)

(b)

${{1}\over{det(A)}}$

(c)

1

(d)

0

11. If A is 3 x 3 matrix and |A|= 4, then |A-1| is equal to

(a)

${{1}\over{4}}$

(b)

${{1}\over{16}}$

(c)

2

(d)

4

12. If A is a square matrix of order 3 and IAI = 3 then | adj A| is equal to

(a)

81

(b)

27

(c)

3

(d)

9

13. If A = $\begin{vmatrix}cos \theta & sin \theta \\ -sin \theta&cons\theta \end{vmatrix}$ then |2A| is equal to

(a)

4 cos 2 $\theta$

(b)

4

(c)

2

(d)

1

14. If $\triangle=\begin{vmatrix} {a}_{11} & {a}_{12} & {a}_{13} \\ {a}_{21} & {a}_{22} & {a}_{23} \\ {a}_{31} & {a}_{32} & {a}_{33} \end{vmatrix}$ and Aij is cofactor of aij, then value of $\triangle$ is given by

(a)

a11 A31 + a12 A32 + a13 A33

(b)

a11 A11 + a12 A21 + a13 A31

(c)

a21 A11 + a22 A12 + a23 A13

(d)

a11 A11 + a21 A21 + a31 A31

15. If $\begin{vmatrix} 4 & 3 \\ 3 & 1 \end{vmatrix}=-5$ then value of $\begin{vmatrix} 20 & 15 \\ 15 & 5 \end{vmatrix}$ is

(a)

-5

(b)

-125

(c)

-25

(d)

0

16. If nC3 = nC2, then the value of nC4 is

(a)

2

(b)

3

(c)

4

(d)

5

17. The number of ways selecting 4 players out of 5 is

(a)

4!

(b)

20

(c)

25

(d)

5

18. The greatest positive integer which divide n(n + 1) (n + 2) (n + 3) for n $\in$ N is

(a)

2

(b)

6

(c)

20

(d)

24

19. For all n > 0, nC1 + nC2 + nC3 + ... +nCn is equal to

(a)

2n

(b)

2n- 1

(c)

n2

(d)

n2 - 1

20. The constant term in the expansion of ${ \left( x+\frac { 2 }{ x } \right) }^{ 6 }$

(a)

156

(b)

165

(c)

162

(d)

160

21. If $\frac { kx }{ (x+4)(2x-1) } =\frac { 4 }{ x+4 } +\frac { 1 }{ 2x-1 }$ then k is equal to

(a)

9

(b)

11

(c)

5

(d)

7

22. The number of parallelograms that can be formed from the set of four parallel lines intersecting another set of three parallel lines is

(a)

18

(b)

12

(c)

9

(d)

6

23. The total number of 9 digit number which have all different digit is

(a)

10!

(b)

9!

(c)

9$\times$9!

(d)

10$\times$10!

24. Number of words with or without meaning that can be formed using letters of the word "EQUATION" , with no repetition of letters is

(a)

7!

(b)

3!

(c)

8!

(d)

5!

25. The number of permutation of n different things taken r at a time, when the repetition is allowed is

(a)

rn

(b)

nr

(c)

$\frac { n! }{ (n-r)! }$

(d)

$\frac { n! }{ (n+r)! }$

26. The angle between the pair of straight lines x2 - 7xy + 4y2 = 0

(a)

$tan^{-1}\left(1\over 3\right)$

(b)

$tan^{-1}\left(1\over 2\right)$

(c)

$tan^{-1}\left(\sqrt{33}\over 5\right)$

(d)

$tan^{-1}\left(5\over\sqrt{33}\right)$

27. If the lines 2x - 3y - 5 = 0 and 3x - 4y - 7 = 0 are the diameters of a circle, then its centre is

(a)

(-1, 1)

(b)

(1,1)

(c)

(1, -1 )

(d)

(-1, -1)

28. The locus of the point P which moves such that P is at equidistance from their coordinate axes is

(a)

$y={1\over x}$

(b)

y=-x

(c)

y=x

(d)

$y=-{1\over x}$

29. If kx2 + 3xy - 2y2 = 0 represent a pair of lines which are perpendicular then k is equal to

(a)

1/2

(b)

-1/2

(c)

2

(d)

-2

30. The focus of the parabola x2 = 16y is

(a)

(4,0)

(b)

(-4,0)

(c)

(0,4)

(d)

(0,-4)

31. The centre of the circle x2 + y - 2x + 2y - 9 = 0 is

(a)

(1,1)

(b)

(-1,-1)

(c)

(-1,1)

(d)

(1, -1)

32. If the centre of the circle is (-a, -b) and radius $\sqrt{a^2-b^2}$then the equation of circle is

(a)

x2+y2+2ax+2by+2b2=0

(b)

x2+y2+2ax +2by-2b2=0

(c)

x2 +y2 - 2ax - 2by - 2b2 = 0

(d)

x2 + y - 2ax - 2by + 2b2 = 0

33. ax2 + 4xy + 2y2 = 0 represents a pair of parallel lines then 'a' is

(a)

2

(b)

-2

(c)

4

(d)

-4

34. The equation of the circle with centre (3,-4) and touches the x - axis

(a)

(x - 3)2 +(y - 4)2 = 4

(b)

(x - 3)2 +(y + 4)2 =16

(c)

(x-3)2+(y- 4)2=16

(d)

x2+y2=16

35. The eccentricity of the parabola is

(a)

3

(b)

2

(c)

0

(d)

1

36. The distance between directrix and focus of a parabola y2 = 4ax is

(a)

a

(b)

2a

(c)

4a

(d)

3a

37. The degree measure of $\frac{\pi}{8}$ is

(a)

20o60'

(b)

22o30'

(c)

20o60'

(d)

20o30'

38. If $\tan\theta=\frac{1}{\sqrt5}$ and $\theta$ lies in the first quadrant, then $\cos\theta$ is

(a)

$\frac{1}{\sqrt6}$

(b)

$\frac{-1}{\sqrt6}$

(c)

$\frac{\sqrt5}{\sqrt6}$

(d)

$\frac{-\sqrt5}{\sqrt6}$

39. The value of $\sin(-420^o)$ is

(a)

$\frac{\sqrt3}{2}$

(b)

$-\frac{\sqrt3}{2}$

(c)

$\frac{1}{2}$

(d)

$\frac{-1}{2}$

40. The value of sin 15o cos 15o is

(a)

1

(b)

$\frac{1}{2}$

(c)

$\frac{\sqrt3}{2}$

(d)

$\frac{1}{4}$

41. The value of cos245o-sin245o is

(a)

$\frac{\sqrt3}{2}$

(b)

$\frac{1}{2}$

(c)

0

(d)

$\frac{1}{\sqrt{2}}$

42. The value of 1-2sin245o is

(a)

1

(b)

$\frac{1}{2}$

(c)

$\frac14$

(d)

0

43. The value of $\frac{2\tan30^o}{1+tan^230}$ is

(a)

$\frac12$

(b)

$\frac{1}{\sqrt3}$

(c)

$\frac{\sqrt{3}}{2}$

(d)

$\sqrt3$

44. The value of $\frac{3\tan10^o-\tan^310}{1-3\tan^210}$ is

(a)

$\frac{1}{\sqrt3}$

(b)

$\frac{1}{2}$

(c)

$\frac{\sqrt3}2$

(d)

$\frac{1}{\sqrt2}$

45. If $\alpha$ and $\beta$ be between 0 and $\frac{\pi}{2}$ and if $\cos(\alpha+\beta)=\frac{12}{13}$ and $\sin(\alpha-\beta)=\frac{3}{5}$ then $\sin2\alpha$ is

(a)

$\frac{16}{15}$

(b)

0

(c)

$\frac{56}{65}$

(d)

$\frac{64}{65}$

46. $\tan\left(\frac{\pi}{4}-x\right)$ is

(a)

$\left(\frac{1+\tan x}{1-\tan x}\right)$

(b)

$\left(\frac{1-\tan x}{1+\tan x}\right)$

(c)

1-tan x

(d)

1+tan x

47. $\sin\left(\cos^{-1}\frac{3}{5}\right)$ is

(a)

$\frac{3}{5}$

(b)

$\frac{5}{3}$

(c)

$\frac{4}{5}$

(d)

$\frac{5}{4}$

48. $\left(\frac{\cos x}{cosec x}\right)-\sqrt{1-\sin^2x}\sqrt{1-\cos^2x}$ is

(a)

cos2x-sin2x

(b)

sin2x-cos2x

(c)

1

(d)

0

49. If f(x) = x2 - x + 1, then f (x + 1) is

(a)

x2

(b)

x

(c)

1

(d)

x2 + x + 1

50. If f(x) = $\frac{1-x}{1+x}$ then f(-x) is equal to

(a)

-f(x)

(b)

$\frac{1}{f(x)}$

(c)

$\frac{-1}{f(x)}$

(d)

f(x)

51. The graph of y = 2x2 is passing through

(a)

(0,0)

(b)

(2,1)

(c)

(2,0)

(d)

(0,2)

52. If f(x) = 2x and get g(x) = $\frac{1}{2^x}$ then (fg)(x) is

(a)

1

(b)

0

(c)

4x

(d)

$\frac{1}{4^x}$

53. The range of f(x) = |x|, for all $x\epsilon R$, is

(a)

(0, $\infty$)

(b)

(0, $\infty$)

(c)

(-$\infty$$\infty$)

(d)

(1, $\infty$)

54. $\lim _{ x\rightarrow \infty }{ \frac { \tan { \theta } }{ \theta } } =$

(a)

1

(b)

$\infty$

(c)

$-\infty$

(d)

$\theta$

55. For what value of x, f(x) = $\frac{x+2}{x-1}$ is not continuous?

(a)

-2

(b)

1

(c)

2

(d)

-1

56. $\frac{d}{dx}(\frac{1}{x})$ is equal to

(a)

$-\frac{1}{x^2}$

(b)

$-\frac{1}{x}$

(c)

log x

(d)

$\frac{1}{x^2}$

57. If y = x and z = $\frac{1}{x}$ then $\frac{dy}{dz}=$

(a)

x2

(b)

1

(c)

-x2

(d)

$-\frac{1}{x^2}$

58. $\frac{d}{dx}(a^x)=$

(a)

$\frac { 1 }{ x\log { \begin{matrix} a \\ e \end{matrix} } }$

(b)

aa

(c)

$x\log { \begin{matrix} a \\ e \end{matrix} }$

(d)

${ a }^{ x }\log { \begin{matrix} a \\ e \end{matrix} }$

59. Average fixed cost of the cost function C(x) = 2x3 +5x2 - 14x +21 is

(a)

$\frac { 2 }{ 3 }$

(b)

$\frac { 5}{ x }$

(c)

$\frac { -14 }{ x }$

(d)

$\frac { 21 }{ x }$

60. Marginal revenue of the demand function p= 20–3x is

(a)

20–6x

(b)

20–3x

(c)

20+6x

(d)

20+3x

61. If the demand function is said to be inelastic, then

(a)

|nd|>1

(b)

|nd|=1

(c)

|nd|<1

(d)

|nd| = 0

62. The elasticity of demand for the demand function x = $\frac { 1 }{ p }$ os

(a)

0

(b)

1

(c)

$-\frac { 1 }{ p }$

(d)

$\infty$

63. Relationship among MR, AR and ηd is

(a)

${ n }_{ d }=\frac { AR }{ AR-MR }$

(b)

n4 =  AR - MR

(c)

MR = AR = n4

(d)

$AR=\frac { MR }{ { n }_{ 4 } }$

64. Instantaneous rate of change of y = 2x2 + 5x with respect to x at x = 2 is

(a)

4

(b)

5

(c)

13

(d)

9

65. Profit P(x) is maximum when

(a)

MR = MC

(b)

MR = 0

(c)

MC = AC

(d)

TR = AC

66. The maximum value of f(x)= sinx is

(a)

1

(b)

$\frac { \sqrt { 3 } }{ 2 }$

(c)

$\frac { 1 }{ \sqrt { 2 } }$

(d)

$-\frac { 1 }{ \sqrt { 2 } }$

67. If f(x,y) is a homogeneous function of degree n, then $x\frac { \partial f }{ \partial x } +y\frac { \partial f }{ \partial y }$ is equal to

(a)

(n–1)f

(b)

n(n–1)f

(c)

nf

(d)

f

68. If u = ${ e }^{ { x }^{ 2 } }$ then $\frac { \partial u }{ \partial x }$ is equal to

(a)

${ 2x }e^{ { x }^{ 2 } }$

(b)

${ e }^{ { x }^{ 2 } }$

(c)

${2 e }^{ { x }^{ 2 } }$

(d)

0

69. A company begins to earn profit at

(a)

Maximum point

(b)

Breakeven point

(c)

Stationary point

(d)

Even point

70. The demand function is always

(a)

Increasing function

(b)

Decreasing function

(c)

Non-decreasing function

(d)

Undefined function

71. if q = 1000 + 8p1 - p2 then, $\frac { \partial q }{ \partial { p }_{ 1 } }$ is

(a)

-1

(b)

8

(c)

1000

(d)

1000 - p2

72. If R = 5000 units / year, C1 = 20 paise , C3 = Rs 20 then EOQ is

(a)

5000

(b)

100

(c)

1000

(d)

200

73. The dividend received on 200 shares of face value Rs.100 at 8% dividend value is

(a)

1600

(b)

1000

(c)

1500

(d)

800

74. A man received a total dividend of Rs 25,000 at 10% dividend rate on a stock of face value Rs.100, then the number of shares purchased.

(a)

3500

(b)

4500

(c)

2500

(d)

300

75. The brokerage paid by a person on this sale of 400 shares of face value Rs.100 at 1% brokerage

(a)

Rs 600

(b)

Rs 500

(c)

Rs 200

(d)

Rs 400

76. A person brought a 9% stock of face value Rs 100, for 100 shares at a discount of 10%, then the stock purchased is

(a)

Rs 9000

(b)

Rs 6000

(c)

Rs 5000

(d)

Rs 4000

77. The annual income on 500 shares of face value 100 at 15% is

(a)

Rs 7,500

(b)

Rs 5,000

(c)

Rs 8,000

(d)

Rs 8,500

78. If ‘a’ is the annual payment, ‘n’ is the number of periods and ‘i’ is compound interest for Rs 1 then future amount of the annuity is

(a)

A = $\frac{a}{i}(1+i)(1+i)^n-1]$

(b)

A = $\frac{a}{i}[(1+i)^n-1]$

(c)

P = $\frac{a}{i}$

(d)

P = $\frac{a}{i}(1+i)[1-(1+i)^{-n}]$

79. An annuity in which payments are made at the beginning of each payment period is called

(a)

Annuity due

(b)

An immediate annuity

(c)

perpetual annuity

(d)

none of these

80. The present value of the perpetual annuity of Rs 2000 paid monthly at 10 % compound interest is

(a)

Rs 2,40,000

(b)

Rs 6,00,000

(c)

20,40,000

(d)

Rs 2,00,400

81. Which of the following is positional measure?

(a)

Range

(b)

Mode

(c)

Mean deviation

(d)

Percentiles

82. When calculating the average growth of economy, the correct mean to use is?

(a)

Weighted mean

(b)

Arithmetic mean

(c)

Geometric mean

(d)

Harmonic mean

83. The best measure of central tendency is

(a)

Arithmetic mean

(b)

Harmonic mean

(c)

Geometric mean

(d)

Median

84. The harmonic mean of the numbers 2,3,4 is

(a)

$\frac { 12 }{ 13 }$

(b)

2

(c)

$\frac { 36 }{ 13 }$

(d)

$\frac { 13 }{ 36 }$

85. The geometric mean of two numbers 8 and 18 shall be

(a)

12

(b)

13

(c)

15

(d)

11.08

86. The correct relationship among A.M.,G.M.and H.M.is:

(a)

A.M.<G.M.<H.M.

(b)

G.M.≥A.M.≥H.M.

(c)

H.M.≥G.M.≥A.M.

(d)

A.M.≥G.M.≥H.M.

87. The median of 10,14,11,9,8,12,6 is

(a)

10

(b)

12

(c)

14

(d)

9

88. If the mean of 1,2,3,.......n is$\frac { 6n }{ 11 }$, then the value of n is

(a)

10

(b)

12

(c)

11

(d)

13

89. The first quartile is also known as

(a)

median.

(b)

lower quartile.

(c)

mode.

(d)

third decile

90. If Q1 = 30 and Q3 = 50, the coefficient of quartile deviation is

(a)

20

(b)

40

(c)

10

(d)

0.25

91. The two events A and B are mutually exclusive if

(a)

$P\left( A\cap B \right) =0$

(b)

$P\left( A\cap B \right) =1$

(c)

$P\left( A\cup B \right) =0$

(d)

$P\left( AUB \right) =1$

92. If two events A and B are dependent then the conditional probability of P(B/A) is

(a)

$P(A)P(B/A)$

(b)

$\frac { P(A\cup B) }{ P(B) }$

(c)

$\frac { P(A\cap B) }{ P(A) }$

(d)

$P(A)P(A/B)$

93. If the outcome of one event does not influence another event then the two events are

(a)

Mutually exclusive

(b)

Dependent

(c)

Not disjoint

(d)

Independent

94. The probability of obtaining an even prime number on each die, when a pair of dice is rolled is

(a)

1/36

(b)

0

(c)

1/3

(d)

1/6

95. Probability that at least one of the events A, B occur is

(a)

$P(A\cup B)$

(b)

$P(A\cap B)$

(c)

P(A/B)

(d)

$(A\cup B)$

96. Example for positive correlation is

(a)

Income and expenditure

(b)

Price and demand

(c)

Repayment period and EMI

(d)

Weight and Income

97. If the values of two variables move in opposite direction then the correlation is said to be

(a)

Negative

(b)

Positive

(c)

Perfect positive

(d)

No correlation

98. If r(X,Y) = 0 the variables X and Y are said to be

(a)

Positive correlation

(b)

Negative correlation

(c)

No correlation

(d)

Perfect positive correlation

99. The correlation coefficient from the following data N=25, ΣX=125, ΣY=100, ΣX2=650, ΣY2=436, ΣXY=520

(a)

0.667

(b)

-0.006

(c)

-0.667

(d)

0.70

100. The correlation coefficient is

(a)

r(X,Y)=$\frac { { \sigma }_{ x }{ \sigma }_{ y } }{ cov(x,y) }$

(b)

r(X,Y)=$\frac { cov(x,y) }{ { \sigma }_{ x }{ \sigma }_{ y } }$

(c)

r(X,Y)=$\frac { cov(x,y) }{ { \sigma }_{ y } }$

(d)

r(X,Y)=$\frac { cov(x,y) }{ { \sigma }_{ x } }$

101. The variable whose value is influenced or is to be predicted is called

(a)

dependent variable

(b)

independent variable

(c)

regressor

(d)

explanatory variable

102. The correlation coefficient

(a)

r=±$\sqrt { { b }_{ xy }\times { b }_{ yx } }$

(b)

r=$\frac { 1 }{ { b }_{ xy }\times { b }_{ yx } }$

(c)

r=bxy x byx

(d)

r=±$\sqrt { \frac { 1 }{ { b }_{ xy }\times { b }_{ yx } } }$

103. The regression coefficient of X on Y

(a)

bxy=$\frac { N\Sigma dxdy-(\Sigma dx)(\Sigma dy) }{ N\Sigma dy^{ 2 }-(\Sigma dy)^{ 2 } }$

(b)

byx=$\frac { N\Sigma dxdy-(\Sigma dx)(\Sigma dy) }{ N\Sigma dy^{ 2 }-(\Sigma dy)^{ 2 } }$

(c)

bxy=$\frac { N\Sigma dxdy-(\Sigma dx)(\Sigma dy) }{ N\Sigma dx^{ 2 }-(\Sigma dx)^{ 2 } }$

(d)

bxy=$\frac { N\Sigma xy-(\Sigma x)(\Sigma y) }{ \sqrt { N\Sigma { x }^{ 2 }-(\Sigma x)^{ 2 }\times \sqrt { N\Sigma y^{ 2 }-(\Sigma y)^{ 2 } } } }$

104. When one regression coefficient is negative, the other would be

(a)

Negative

(b)

Positive

(c)

Zero

(d)

None of them

105. If X and Y are two variates, there can be atmost

(a)

One regression line

(b)

two regression lines

(c)

three regression lines

(d)

more regression lines

106. Scatter diagram of the variate values (X,Y) give the idea about

(a)

functional relationship

(b)

regression model

(c)

distribution of errors

(d)

no relation

107. If two variables moves in decreasing direction then the correlation is

(a)

positive

(b)

negative

(c)

perfect negative

(d)

no correlation

108. The person suggested a mathematical method for measuring the magnitude of linear relationship between two variables say X and Y is

(a)

Karl Pearson

(b)

Spearman

(c)

Croxton and Cowden

(d)

Ya Lun Chou

109. The term regression was introduced by

(a)

R.A Fisher

(b)

Sir Francis Galton

(c)

Karl Pearson

(d)

Croxton and Cowden

110. The coefficient of correlation describes

(a)

the magnitude and direction

(b)

only magnitude

(c)

only direction

(d)

no magnitude and no direction

111. Cov(x,y)=–16.5, ${ \sigma }_{ x }^{ 2 }=2.89,{ \sigma }_{ y }^{ 2 }$=100. Find correlation coefficient

(a)

-0.12

(b)

0.001

(c)

-1

(d)

-0.97

112. The critical path of the following network is

(a)

1 – 2 – 4 – 5

(b)

1– 3– 5

(c)

1 – 2 – 3 – 5

(d)

1 – 2 – 3 – 4 – 5

113. Maximize: z=3x1+4x2 subject to 2x1+x2≤40, 2x1+5x2≤180, x1,x2≥0 in the LPP, which one of the following is feasible corner point?

(a)

x1=18, x2=24

(b)

x1=15, x2=30

(c)

x1=2.5, x2=35

(d)

x1=20, x2=19

114. A solution which maximizes or minimizes the given LPP is called

(a)

a solution

(b)

a feasible solution

(c)

an optimal solution

(d)

none of these

115. The maximum value of the objective function Z = 3x + 5y subject to the constraints x > 0 , y > 0 and 2x + 5y ≤10 is

(a)

6

(b)

15

(c)

25

(d)

31

116. In the context of network, which of the following is not correct

(a)

A network is a graphical representation

(b)

A project network cannot have multiple initial and final nodes

(c)

An arrow diagram is essentially a closed network

(d)

An arrow representing an activity may not have a length and shape

117. The objective of network analysis is to

(a)

Minimize total project cost

(b)

Minimize total project duration

(c)

Minimize production delays, interruption and conflicts

(d)

All the above

118. Network problems have advantage in terms of project

(a)

Scheduling

(b)

Planning

(c)

Controlling

(d)

All the above

119. In critical path analysis, the word CPM mean

(a)

Critical path method

(b)

Crash project management

(c)

Critical project management

(d)

Critical path management

120. Given an L.P.P maximize Z=2x1+3x2 subject to the constrains x1+x2≤1, 5x1+5x2≥0 and x1≥0, x2≥0 using graphical method, we observe

(a)

No feasible solution

(b)

unique optimum solution

(c)

multiple optimum solution

(d)

none of these