" /> -->

#### Application of Matrices and Determinants Two Marks Questions

12th Standard EM

Reg.No. :
•
•
•
•
•
•

Maths

Time : 00:45:00 Hrs
Total Marks : 20
10 x 2 = 20
1. If A = $\left[ \begin{matrix} a & b \\ c & d \end{matrix} \right]$ is non-singular, find A−1.

2. If adj A = $\left[ \begin{matrix} -1 & 2 & 2 \\ 1 & 1 & 2 \\ 2 & 2 & 1 \end{matrix} \right]$, find A−1.

3. Find the rank of the following matrices which are in row-echelon form :
$\left[ \begin{matrix} 2 & 0 & -7 \\ 0 & 3 & 1 \\ 0 & 0 & 1 \end{matrix} \right]$

4. Find the rank of the following matrices by minor method:
$\left[ \begin{matrix} 0 \\ \begin{matrix} 0 \\ 8 \end{matrix} \end{matrix}\begin{matrix} 1 \\ \begin{matrix} 2 \\ 1 \end{matrix} \end{matrix}\begin{matrix} 2 \\ \begin{matrix} 4 \\ 0 \end{matrix} \end{matrix}\begin{matrix} 1 \\ \begin{matrix} 3 \\ 2 \end{matrix} \end{matrix} \right]$

5. Find the rank of the following matrices which are in row-echelon form :
$\left[ \begin{matrix} 6 \\ \begin{matrix} 0 \\ \begin{matrix} 0 \\ 0 \end{matrix} \end{matrix} \end{matrix}\begin{matrix} 0 \\ \begin{matrix} 2 \\ \begin{matrix} 0 \\ 0 \end{matrix} \end{matrix} \end{matrix}\begin{matrix} -9 \\ \begin{matrix} 0 \\ \begin{matrix} 0 \\ 0 \end{matrix} \end{matrix} \end{matrix} \right]$

6. For the matrix A, if A3 = I, then find A-1.

7. If A is a square matrix such that A3 = I, then prove that A is non-singular.

8. Find the rank of the matrix A =$\left[ \begin{matrix} 4 \\ 7 \end{matrix}\begin{matrix} 5 \\ -3 \end{matrix}\begin{matrix} -6 \\ 0 \end{matrix}\begin{matrix} 1 \\ 8 \end{matrix} \right]$.

9. Show that the equations 3x + y + 9z = 0, 3x + 2y + 12z = 0 and 2x + y + 7z = 0 have nontrivial solutions also.

10. Solve 6x - 7y = 16, 9x - 5y = 35 using (Cramer's rule).