New ! Maths MCQ Practise Tests

12th Standard Maths Applications of Vector Algebra English Medium Free Online Test One Mark Questions 2020 - 2021

12th Standard

    Reg.No. :
  •  
  •  
  •  
  •  
  •  
  •  

Maths

Time : 00:10:00 Hrs
Total Marks : 10

    Answer all the questions

    10 x 1 = 10
  1. If \(\vec{a}\) and \(\vec{b}\) are parallel vectors, then \([\vec { a } ,\vec { c } ,\vec { b } ]\) is equal to

    (a)

    2

    (b)

    -1

    (c)

    1

    (d)

    0

  2. If \(\vec { a } \) and \(\vec { b } \) are unit vectors such that \([\vec { a } ,\vec { b },\vec { a } \times \vec { b } ]=\frac { \pi }{ 4 } \), then the angle between \(\vec { a } \) and \(\vec { b } \) is

    (a)

    \(\frac { \pi }{ 6 } \)

    (b)

    \(\frac { \pi }{ 4 } \)

    (c)

    \(\frac { \pi }{ 3 } \)

    (d)

    \(\frac { \pi }{ 2 } \)

  3. If the volume of the parallelepiped with \(\vec { a } \times \vec { b } ,\vec { b } \times \vec { c } ,\vec { c } \times \vec { a } \)  as coterminous edges is 8 cubic units, then the volume of the parallelepiped with \((\vec { a } \times \vec { b } )\times (\vec { b } \times \vec { c } ),(\vec { b } \times \vec { c } )\times (\vec { c } \times \vec { a } )\) and \((\vec { c } \times \vec { a } )\times (\vec { a } \times \vec { b } )\)as coterminous edges is, 

    (a)

    8 cubic units

    (b)

    512 cubic units

    (c)

    64 cubic units

    (d)

    24 cubic units

  4. If \(\vec { a } \times (\vec { b } \times \vec { c } )=(\vec { a } \times \vec { b } )\times \vec { c } \) where \(\vec { a } ,\vec { b } ,\vec { c } \) are any three vectors such that \(\vec { a } ,\vec { b } \) \(\neq \) 0 and  \(\vec { a } .\vec { b } \) \(\neq \) 0 then \(\vec { a } \) and \(\vec { c } \) are

    (a)

    perpendicular

    (b)

    parallel

    (c)

    inclined at an angle \(\frac{\pi}{3}\)

    (d)

    inclined at an angle  \(\frac{\pi}{6}\)

  5. The angle between the line \(\vec { r } =(\hat { i } +2\hat { j } -3\hat { k } )+t(2\hat { i } +\hat { j } -2\hat { k } )\) and the plane \(\vec { r } .(\hat { i } +\hat { j } )+4=0\) is

    (a)

    (b)

    30°

    (c)

    45°

    (d)

    90°

  6. The vector equation \(\vec { r } =(\hat { i } -2\hat { j } -\hat { k } )+t(6\hat { i } -\hat { k) } \) represents a straight line passing through the points

    (a)

    (0,6,1)− and (1,2,1)

    (b)

    (0,6,-1) and (1,4,2)

    (c)

    (1,-2,-1) and (1,4,-2)

    (d)

    (1,-2,-1) and (0,-6,1)

  7. The vector, d\(\overset { \wedge }{ i } +\overset { \wedge }{ j } +2\overset { \wedge }{ k } ,\overset { \wedge }{ i } +\lambda \overset { \wedge }{ j } -\overset { \wedge }{ k } \) t and \(2\overset { \wedge }{ i } -\overset { \wedge }{ j } +\lambda \overset { \wedge }{ k } \) are co-planar if

    (a)

    λ = -2

    (b)

    λ = 1+\(\sqrt { 3 } \)

    (c)

    λ = 1 - \(\sqrt { 3 } \)

    (d)

    λ = -2,1土 \(\sqrt { 3 } \)

  8. If \(\overset { \rightarrow }{ a } \) and \(\overset { \rightarrow }{ b } \) are two unit vectors, then the vectors \(\left( \overset { \rightarrow }{ a } +\overset { \rightarrow }{ b } \right) \times \left( \overset { \rightarrow }{ a } \times \overset { \rightarrow }{ b } \right) \) is parallel to the vector

    (a)

    \(\overset { \rightarrow }{ a } -\overset { \rightarrow }{ b } \)

    (b)

    \(\overset { \rightarrow }{ a } +\overset { \rightarrow }{ b } \)

    (c)

    2\(\overset { \rightarrow }{ a } -\overset { \rightarrow }{ b } \)

    (d)

    2\(\overset { \rightarrow }{ a } +\overset { \rightarrow }{ b } \)

  9. If the vector \(\overset { \wedge }{ i } +\overset { \wedge }{ j } +\overset { \wedge }{ 2k } \)\(\overset { \wedge }{ -i } +\overset { \wedge }{ 2k } \) and \(2\overset { \wedge }{ i } +x\overset { \wedge }{ j } -y\overset { \wedge }{ k } \)  are mutually orthogonal, then the values of x, y, z are

    (a)

    (10, 4, 1)

    (b)

    (-10, 4, 1)

    (c)

    (-10, -4, \(\frac { 1 }{ 2 } \))

    (d)

    (-10, 4, \(\frac { 1 }{ 2 } \))

  10. The area of the parallelogram having diagonals \(\overset { \rightarrow }{ a } =\overset { \wedge }{ 3i } +\overset { \wedge }{ j } -2\overset { \wedge }{ k } \) and \(\overset { \rightarrow }{ b } =\overset { \wedge }{ i } -3\overset { \wedge }{ j } +4\overset { \wedge }{ k } \) is _______________

    (a)

    4

    (b)

    \(2\sqrt { 3 } \)

    (c)

    \(4\sqrt { 3 } \)

    (d)

    \(5\sqrt { 3 } \)

*****************************************

TN 12th Standard Maths free Online practice tests

Reviews & Comments about 12th Standard Maths Applications of Vector Algebra English Medium Free Online Test One Mark Questions 2020 - 2021

Write your Comment