New ! Maths MCQ Practise Tests



Applications of Vector Algebra Model Question Paper

12th Standard

    Reg.No. :
  •  
  •  
  •  
  •  
  •  
  •  

Maths

Time : 02:00:00 Hrs
Total Marks : 60
    10 x 1 = 10
  1. If \(\vec{a}\) and \(\vec{b}\) are parallel vectors, then \([\vec { a } ,\vec { c } ,\vec { b } ]\) is equal to

    (a)

    2

    (b)

    -1

    (c)

    1

    (d)

    0

  2. If \(\vec { a } .\vec { b } =\vec { b } .\vec { c } =\vec { c } .\vec { a } =0\) , then the value of \([\vec { a } ,\vec { b } ,\vec { c } ]\) is

    (a)

    \(\left| \vec { a } \right| \left| \vec { b } \right| \left| \vec { c } \right| \)

    (b)

    \(\frac{1}{3}\)\(\left| \vec { a } \right| \left| \vec { b } \right| \left| \vec { c } \right| \)

    (c)

    1

    (d)

    -1

  3. If \(\vec { a } =\hat { i } +\hat { j } +\hat { k } \)\(\vec { b } =\hat { i } +\hat { j } \)\(\vec { c } =\hat { i } \) and \((\vec { a } \times \vec { b } )\times\vec { c } \) = \(\lambda \vec { a } +\mu \vec { b } \), then the value of \(\lambda +\mu \) is

    (a)

    0

    (b)

    1

    (c)

    6

    (d)

    3

  4. Consider the vectors \(\vec { a } ,\vec { b } ,\vec { c } ,\vec { d} \) such that \((\vec { a } \times \vec { b } )\times (\vec { c } \times \vec { d } )\) = \(\vec { 0 } \) Let \({ P }_{ 1 }\) and \({ P }_{ 2 }\) be the planes determined by the pairs of vectors \(\vec { a } ,\vec { b } \) and \(\vec { c } ,\vec { d } \) respectively. Then the angle between \({ P }_{ 1 }\) and \({ P }_{ 2 }\) is

    (a)

    (b)

    45°

    (c)

    60°

    (d)

    90°

  5. If \(\vec { a } =2\hat { i } +3\hat { j } -\hat { k } ,\vec { b } =\hat { i } +2\hat { j } -5\hat { k } ,\vec { c } =3\hat { i } +5\hat { j } -\hat { k } ,\) then a vector perpendicular to \(\vec { a } \) and lies in the plane containing \(\vec { b } \) and \(\vec { c } \) is

    (a)

    \(-17\hat { i } +21\hat { j } -97\hat { k } \)

    (b)

    \(17\hat { i } +21\hat { j } -123\hat { k } \)

    (c)

    \(-17\hat { i } -21\hat { j } +97\hat { k } \)

    (d)

    \(-17\hat { i } -21\hat { j } -97\hat { k } \)

  6. The angle between the line \(\vec { r } =(\hat { i } +2\hat { j } -3\hat { k } )+t(2\hat { i } +\hat { j } -2\hat { k } )\) and the plane \(\vec { r } .(\hat { i } +\hat { j } )+4=0\) is

    (a)

    (b)

    30°

    (c)

    45°

    (d)

    90°

  7. The coordinates of the point where the line \(\vec { r } =(6\hat { i } -\hat { j } -3\hat { k } )+t(-\hat { i } +4\hat { j } )\) meets the plane \(\vec { r } .(\hat { i } +\hat { j } -\hat { k } )\) = 3 are

    (a)

    (2, 1, 0)

    (b)

    (7, -1, -7)

    (c)

    (1, 2, -6)

    (d)

    (5, -1, 1)

  8. The distance between the planes x + 2y + 3z + 7 = 0 and 2x + 4y + 6z + 7 = 0

    (a)

    \(\frac { \sqrt { 7 } }{ 2\sqrt { 2 } } \)

    (b)

    \(\frac{7}{2}\)

    (c)

    \(\frac { \sqrt { 7 } }{ 2 } \)

    (d)

    \(\frac { 7 }{ 2\sqrt { 2 } } \)

  9. If the distance of the point (1, 1, 1) from the origin is half of its distance from the plane x + y + z + k = 0, then the values of k are

    (a)

    \(\pm 3\)

    (b)

    \(\pm 6\)

    (c)

    -3, 9

    (d)

    3, -9

  10. If the length of the perpendicular from the origin to the plane 2x + 3y + λz =1, λ > 0 is \(\frac{1}{5}\)then the value of λ is

    (a)

    \(2\sqrt { 3 } \)

    (b)

    \(3\sqrt { 2 } \)

    (c)

    0

    (d)

    1

  11. 3 x 2 = 6
  12. (1) displacement
    (2) length
    (3) weight
    (4) velocity

  13. \(\overset { \rightarrow }{ a } ,\overset { \rightarrow }{ b } \) and \(\overset { \rightarrow }{ c } \) are said to be coplanar if
    (1) \(\left[ \overset { \rightarrow }{ a } ,\overset { \rightarrow }{ b } ,\overset { \rightarrow }{ c } \right] \)=0
    (2) \(\overset { \rightarrow }{ a } ,\overset { \rightarrow }{ b } ,\overset { \rightarrow }{ c } \) lie on the same plane
    (3) They are either parallel or intersecting
    (4) Skew lines

  14. The equation of the plane at a distance p from the origin and perpendicular to the unit normal vector \(\overset { \wedge }{ d } \) is 
    (1) \(\overset { \rightarrow }{ r } .\overset { \rightarrow }{ d } =p\)
    (2) \(\overset { \rightarrow }{ r } .\overset { \wedge }{ d } =p\)
    (3) \(\overset { \rightarrow }{ r } .\overset { \rightarrow }{ d } =q\) where \(q=p\left| \overset { \rightarrow }{ d } \right| \)
    (4) \(\overset { \rightarrow }{ r } .\frac { \overset { \rightarrow }{ d } }{ \left| d \right| } =p\)

  15. 8 x 2 = 16
  16. If \(\vec{ a } =\hat { -3i } -\hat { j } +\hat { 5k } \)\(\vec{b}=\hat{i}-\hat{2j}+\hat{k} \),  \(\vec{c}=\hat{4j}-\hat{5k} \ \) find\( \ {\vec a } .(\vec { b } \times \vec { c } )\)

  17. Show that the vectors \(\hat { i } +\hat { 2j } -\hat { 3k } \), \(\hat { 2i } -\hat { j } +\hat { 2k } \) and \(\hat { 3i } +\hat { j } -\hat { k } \)

  18. If \(\vec { a } ,\vec { b } ,\vec { c } \) are three vectors, prove that \([\vec { a } +\vec { c } ,\vec { a } +\vec { b } ,\vec { a } +\vec { b } +\vec { c } ]\) = \([\vec { a } ,\vec { b } ,\vec { c } ]\)

  19. The volume of the parallelepiped whose coterminus edges are \(7\hat { i } +\lambda \hat { j } -3\hat { k } ,\hat { i } +2\hat { j } -\hat { k } \)\(-3\hat { i } +7\hat { j } +5\hat { k } \) is 90 cubic units. Find the value of λ.

  20. Find the non-parametric form of vector equation and Cartesian equations of the straight line passing through the point with position vector  \(4\hat { i } +3\hat { j } -7\hat { k } \) and parallel to the vector \(2\hat { i } -6\hat { j } +7\hat { k } \).

  21. Find the vector and Cartesian equations of the plane passing through the point with position vector \(4\hat { i } +2\hat { j } -3\hat { k } \) and normal to vector \(2\hat { i } -\hat { j } +\hat { k } \)

  22. Verify whether the line \(\frac { x-3 }{ -4 } =\frac { y-4 }{ -7 } =\frac { z+3 }{ 12 } \) lies in the plane 5x-y+z = 8.

  23. Find the distance between the planes \(\vec { r } .(2\hat { i } -\hat { j } -2\hat { k } )\) = 6 and \(\vec { r } .(6\hat { i } -\hat { 3j } -\hat { 6k } )\) = 27

  24. 6 x 3 = 18
  25. With usual notations, in any triangle ABC, prove the following by vector method.
    (i) a = b cos C + c cos B
    (ii) b = c cos A + a cos C
    (iii) c = a cos B + b cos A

  26. Find the magnitude and the direction cosines of the torque about the point (2, 0, -1) of a force \((\hat { 2i } +\hat { j } -\hat { k } )\), whose line of action passes through the origin

  27. Forces of magnit \(5\sqrt { 2 } \) and \(10\sqrt { 2 } \) units acting in the directions \(\hat { 3i } +\hat { 4j } +\hat { 5k } \) and \(\hat { 10i } +\hat { 6j } -\hat { 8k } \) respectively, act on a particle which is displaced from the point with position vector \(\hat { 4i } -\hat { 3j } -\hat { 2k } \) to the point with position vector \(\hat { 6i } +\hat { j } -\hat { 3k } \). Find the work done by the forces.

  28. Let \(\vec { a } =\hat { i } +\hat { j } +\hat { k } \),  \(\vec { b } =\hat { i } \)  and \(\vec { c } ={ c }_{ 1 }\hat { i } +{ c }_{ 2 }\hat { j } +{ c }_{ 3 }\hat { k } \). If \({ c }_{ 1 }=1\) and \({ c }_{ 2 }=2\), find \({ c }_{ 3 }\) such that \(\vec { a } ,\vec { b } \) and \(\vec { c } \) are coplanar.

  29. \(\vec { a } =2\hat { i } +3\hat { j } -\hat { k } ,\vec { b } =-\hat { i } +2\hat { j } -4\hat { k } ,\vec { c } =\hat { i } +\hat { j } +\hat { k } \) then find the value of \((\vec { a } \times \vec { b } )\times (\vec { c } \times \vec { d } )\).

  30. The vector equation in parametric form of a line is \(\vec { r } =(3\hat { i } -2\hat { j } +6\hat { k } )+t(2\hat { i } -\hat { j } +3\hat { k } )\). Find
    (i) the direction cosines of the straight line
    (ii) vector equation in non-parametric form of the line
    (iii) Cartesian equations of the line.

  31. 2 x 5 = 10
  32. With usual notations, in any triangle ABC, prove by vector method that \(\frac { a }{ sinA } =\frac { b }{ sinB }=\frac { c }{ sinc }\)

  33. If \(\vec { a } =\vec { i } -\vec { j } ,\vec { b } =\hat { i } -\hat { j } -4\hat { k } ,\vec { c } =3\hat { j } -\hat { k } \) and \(\vec { d } =2\hat { i } +5\hat { j } +\hat { k } \)
    (i) \((\vec { a } \times \vec { b } )\times (\vec { c } \times \vec { d } )=[\vec { a } ,\vec { b } ,\vec { d } ]\vec { c } -[\vec { a } ,\vec { b } ,\vec { c } ]\vec { d } \)

*****************************************

Reviews & Comments about 12th Standard Maths - Applications of Vector Algebra Model Question Paper

Write your Comment