New ! Maths MCQ Practise Tests

12th Standard Maths English Medium Application of Matrices and Determinants Reduced Syllabus Important Questions With Answer key 2021

12th Standard

    Reg.No. :
  •  
  •  
  •  
  •  
  •  
  •  

Maths

Time : 01:00:00 Hrs
Total Marks : 100

      Multiple Choice Questions


    15 x 1 = 15
  1. If P = \(\left[ \begin{matrix} 1 & x & 0 \\ 1 & 3 & 0 \\ 2 & 4 & -2 \end{matrix} \right] \) is the adjoint of 3 × 3 matrix A and |A| = 4, then x is

    (a)

    15

    (b)

    12

    (c)

    14

    (d)

    11

  2. If A = \(\left[ \begin{matrix} 3 & 1 & -1 \\ 2 & -2 & 0 \\ 1 & 2 & -1 \end{matrix} \right] \) and A-1 = \(\left[ \begin{matrix} { a }_{ 11 } & { a }_{ 12 } & { a }_{ 13 } \\ { a }_{ 21 } & { a }_{ 22 } & { a }_{ 23 } \\ { a }_{ 31 } & { a }_{ 32 } & { a }_{ 33 } \end{matrix} \right] \) then the value of a23 is

    (a)

    0

    (b)

    -2

    (c)

    -3

    (d)

    -1

  3. If A, B and C are invertible matrices of some order, then which one of the following is not true?

    (a)

    adj A = |A|A-1

    (b)

    adj(AB) = (adj A)(adj B)

    (c)

    det A-1 = (det A)-1

    (d)

    (ABC)-1 = C-1B-1A-1

  4. If A is a non-singular matrix such that A-1 = \(\left[ \begin{matrix} 5 & 3 \\ -2 & -1 \end{matrix} \right] \), then (AT)−1 =

    (a)

    \(\left[ \begin{matrix} -5 & 3 \\ 2 & 1 \end{matrix} \right] \)

    (b)

    \(\left[ \begin{matrix} 5 & 3 \\ -2 & -1 \end{matrix} \right] \)

    (c)

    \(\left[ \begin{matrix} -1 & -3 \\ 2 & 5 \end{matrix} \right] \)

    (d)

    \(\left[ \begin{matrix} 5 & -2 \\ 3 & -1 \end{matrix} \right] \)

  5. Which of the following is/are correct?
    (i) Adjoint of a symmetric matrix is also a symmetric matrix.
    (ii) Adjoint of a diagonal matrix is also a diagonal matrix.
    (iii) If A is a square matrix of order n and λ is a scalar, then adj(λA) = λn adj(A).
    (iv) A(adjA) = (adjA)A = |A| I

    (a)

    Only (i)

    (b)

    (ii) and (iii)

    (c)

    (iii) and (iv)

    (d)

    (i), (ii) and (iv)

  6. If ρ(A) = ρ([A | B]), then the system AX = B of linear equations is

    (a)

    consistent and has a unique solution

    (b)

    consistent

    (c)

    consistent and has infinitely many solution

    (d)

    inconsistent

  7. If A = \(\left[ \begin{matrix} 3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1 \end{matrix} \right] \), then adj(adj A) is

    (a)

    \(\left[ \begin{matrix} 3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1 \end{matrix} \right] \)

    (b)

    \(\left[ \begin{matrix} 6 & -6 & 8 \\ 4 & -6 & 8 \\ 0 & -2 & 2 \end{matrix} \right] \)

    (c)

    \(\left[ \begin{matrix} -3 & 3 & -4 \\ -2 & 3 & -4 \\ 0 & 1 & -1 \end{matrix} \right] \)

    (d)

    \(\left[ \begin{matrix} 3 & -3 & 4 \\ 0 & -1 & 1 \\ 2 & -3 & 4 \end{matrix} \right] \)

  8. If A is a square matrix that IAI = 2, than for any positive integer n, |An| =

    (a)

    0

    (b)

    2n

    (c)

    2n

    (d)

    n2

  9. If \(\rho\)(A) = r then which of the following is correct?

    (a)

    all the minors of order n which do not vanish

    (b)

    'A' has at least one minor "of order r which does not vanish and all higher order minors vanish

    (c)

    'A' has at least one (r + 1) order minor which vanish

    (d)

    all (r + 1) and higher order minors should not vanish

  10. Every homogeneous system ______

    (a)

    Is always consistent

    (b)

    Has only trivial solution

    (c)

    Has infinitely many solution

    (d)

    Need not be consistent

  11. In the non - homogeneous system of equations with 3 unknowns if \(\rho\)(A) = \(\rho\)([AIB]) = 2, then the system has _______

    (a)

    unique solution

    (b)

    one parameter family of solution

    (c)

    two parameter family of solutions

    (d)

    in consistent

  12. Cramer's rule is applicable only when ______

    (a)

    Δ ≠ 0

    (b)

    Δ = 0

    (c)

    Δ =0, Δx =0

    (d)

    Δx = Δy = Δz =0

  13. In a homogeneous system if \(\rho\) (A) =\(\rho\)([A|0]) < the number of unknouns then the system has ________

    (a)

    trivial solution

    (b)

    only non - trivial solution

    (c)

    no solution

    (d)

    trivial solution and infinitely many non - trivial solutions

  14. In the system of liner equations with 3 unknowns If \(\rho\)(A) = \(\rho\)([A|B]) =1, the system has ________

    (a)

    unique solution

    (b)

    inconsistent

    (c)

    consistent with 2 parameter -family of solution

    (d)

    consistent with one parameter family of solution.

  15. If A = [2 0 1] then the rank of AAT is ______

    (a)

    1

    (b)

    2

    (c)

    3

    (d)

    0

    1. 2 Marks


    10 x 2 = 20
  16. If adj(A) = \(\left[ \begin{matrix} 0 & -2 & 0 \\ 6 & 2 & -6 \\ -3 & 0 & 6 \end{matrix} \right] \), find A−1.

  17. Find the rank of the following matrices which are in row-echelon form :
    \(\left[ \begin{matrix} 2 & 0 & -7 \\ 0 & 3 & 1 \\ 0 & 0 & 1 \end{matrix} \right] \)

  18. Find the rank of the following matrices by minor method:
    \(\left[ \begin{matrix} 2 & -4 \\ -1 & 2 \end{matrix} \right] \)

  19. Find the rank of the following matrices by minor method:
    \(\left[ \begin{matrix} -1 & 3 \\ 4 & -7 \\ 3 & -4 \end{matrix} \right] \)

  20. Find the rank of the following matrices by minor method:
    \(\left[ \begin{matrix} 0 \\ \begin{matrix} 0 \\ 8 \end{matrix} \end{matrix}\begin{matrix} 1 \\ \begin{matrix} 2 \\ 1 \end{matrix} \end{matrix}\begin{matrix} 2 \\ \begin{matrix} 4 \\ 0 \end{matrix} \end{matrix}\begin{matrix} 1 \\ \begin{matrix} 3 \\ 2 \end{matrix} \end{matrix} \right] \)

  21. Solve the following system of homogenous equations.
    2x + 3y − z = 0, x − y − 2z = 0, 3x + y + 3z = 0

  22. For any 2 x 2 matrix, if A (adj A) =\(\left[ \begin{matrix} 10 & 0 \\ 0 & 10 \end{matrix} \right] \) then find |A|.

  23. Show that the system of equations is inconsistent. 2x + 5y= 7, 6x + 15y = 13.

  24. Flod the rank of the matrix \(\left[ \begin{matrix} 3 & -1 & 1 \\ -15 & 6 & -5 \\ 5 & -2 & 2 \end{matrix} \right] \).

  25. Show that the equations 3x + y + 9z = 0, 3x + 2y + 12z = 0 and 2x + y + 7z = 0 have nontrivial solutions also.

    1. 3 Marks


    10 x 3 = 30
  26. Solve the following systems of linear equations by Cramer’s rule:
    5x − 2y +16 = 0, x + 3y − 7 = 0

  27. In a competitive examination, one mark is awarded for every correct answer while \(\frac { 1 }{ 4 }\) mark is deducted for every wrong answer. A student answered 100 questions and got 80 marks. How many questions did he answer correctly ? (Use Cramer’s rule to solve the problem).

  28. Test for consistency of the following system of linear equations and if possible solve:
    x - y + z = -9, 2x - 2y + 2z = -18, 3x - 3y + 3z + 27 = 0.

  29. Solve the following system:
    x + 2y + 3z = 0, 3x + 4y + 4z = 0, 7x + 10y + 12z = 0.

  30. Find the adjoint of the following:
    \(\left[ \begin{matrix} 2 & 3 & 1 \\ 3 & 4 & 1 \\ 3 & 7 & 2 \end{matrix} \right] \)

  31. Find the inverse (if it exists) of the following:
    \(\left[ \begin{matrix} 5 & 1 & 1 \\ 1 & 5 & 1 \\ 1 & 1 & 5 \end{matrix} \right] \)

  32. Solve the following system of linear equations by matrix inversion method:
    2x − y = 8, 3x + 2y = −2

  33. Solve the following systems of linear equations by Cramer’s rule:
     \(\frac { 3 }{ x } \) + 2y = 12, \(\frac { 2 }{ x } \) + 3y = 13

  34. Solve: 2x + 3y = 10, x + 6y = 4 using Cramer's rule.

  35. Verify (AB)-1 =B-1 A-1 for A=\(\left[ \begin{matrix} 2 & 1 \\ 5 & 3 \end{matrix} \right] \) and B=\(\left[ \begin{matrix} 4 & 5 \\ 3 & 4 \end{matrix} \right] \).

    1. 5 Marks


    7 x 5 = 35
  36. Test for consistency and if possible, solve the following systems of equations by rank method.
    i) x - y + 2z = 2, 2x + y + 4z = 7, 4x - y + z = 4
    ii) 3x + y + z = 2, x - 3y + 2z = 1, 7x - y + 4z = 5
    iii) 2x + 2y + z = 5, x - y + z = 1, 3x + y + 2z = 4
    iv) 2x - y + z = 2, 6x - 3y + 3z = 6, 4x - 2y + 2z = 4

  37. Investigate the values of λ and μ the system of linear equations 2x + 3y + 5z = 9, 7x + 3y - 5z = 8, 2x + 3y + λz = μ, have
    (i) no solution
    (ii) a unique solution
    (iii) an infinite number of solutions.

  38. Solve the following system of linear equations by matrix inversion method:
    2x + 3y − z = 9, x + y + z = 9, 3x − y − z  = −1

  39. Solve the following system of linear equations by matrix inversion method:
    x + y + z − 2 = 0, 6x − 4y + 5z − 31 = 0, 5x + 2y + 2z = 13.

  40. Solve: \(\frac { 2 }{ x } +\frac { 3 }{ y } +\frac { 10 }{ z } =4,\frac { 4 }{ x } -\frac { 6 }{ y } +\frac { 5 }{ z } =1,\frac { 6 }{ x } +\frac { 9 }{ y } -\frac { 20 }{ z } \)=2

  41. The sum of three numbers is 20. If we multiply the third number by 2 and add the first number to the result we get 23. By adding second and third numbers to 3 times the first number we get 46. Find the numbers using Cramer's rule.

  42. Using Gaussian Jordan method, find the values of λ and μ so that the system of equations 2x - 3y + 5z = 12, 3x + y + λz =μ, x - 7y + 8z = 17 has (i) unique solution (ii) infinite solutions and (iii) no solution.

*****************************************

TN 12th Standard Maths free Online practice tests

Reviews & Comments about 12th Standard Maths English Medium Application of Matrices and Determinants Reduced Syllabus Important Questions With Answer key 2021

Write your Comment