New ! Maths MCQ Practise Tests



12th Standard Maths English Medium Complex Numbers Reduced Syllabus Important Questions 2021

12th Standard

    Reg.No. :
  •  
  •  
  •  
  •  
  •  
  •  

Maths

Time : 01:40:00 Hrs
Total Marks : 60

      Multiple Choice Questions


    15 x 1 = 15
  1. in+in+1+in+2+in+3 is

    (a)

    0

    (b)

    1

    (c)

    -1

    (d)

    i

  2. If \(z=\cfrac { \left( \sqrt { 3 } +i \right) ^{ 3 }\left( 3i+4 \right) ^{ 2 } }{ \left( 8+6i \right) ^{ 2 } } \) , then |z| is equal to 

    (a)

    0

    (b)

    1

    (c)

    2

    (d)

    3

  3. If z is a non zero complex number, such that 2iz2 = \(\bar { z } \) then |z| is

    (a)

    \(\cfrac { 1 }{ 2 } \)

    (b)

    1

    (c)

    2

    (d)

    3

  4. If |z - 2 + i | ≤ 2, then the greatest value of |z| is

    (a)

    \(\sqrt { 3 } -2\)

    (b)

    \(\sqrt { 3 } +2\)

    (c)

    \(\sqrt { 5 } -2\)

    (d)

    \(\sqrt { 5 } +2\)

  5. If |z| = 1, then the value of \(\frac { 1+z }{ 1+\overline { z } }\) is

    (a)

    z

    (b)

    \(\bar { z } \)

    (c)

    \(\cfrac { 1 }{ z } \)

    (d)

    1

  6. The solution of the equation |z| - z = 1 + 2i is

    (a)

    \(\frac { 3 }{ 2 } -2i\)

    (b)

    \(-\frac { 3 }{ 2 } +2i\)

    (c)

    \(2-\frac { 3 }{ 2 } i\)

    (d)

    \(2+\frac { 3 }{ 2 } i\)

  7. If |z1| = 1, |z2| = 2, |z3| = 3 and |9z1z+ 4z1z+ z2z3| = 12, then the value of |z1+z2+z3| is 

    (a)

    1

    (b)

    2

    (c)

    3

    (d)

    4

  8. If z is a complex number such that \(z \in \mathbb{C} \backslash \mathbb{R}\) and \(z+\frac { 1 }{ z } \epsilon R\), then |z| is

    (a)

    0

    (b)

    1

    (c)

    2

    (d)

    3

  9. If z = x + iy is a complex number such that |z+2| = |z−2|, then the locus of z is

    (a)

    real axis

    (b)

    imaginary axis

    (c)

    ellipse

    (d)

    circle

  10. The principal argument of \(\cfrac { 3 }{ -1+i } \) is

    (a)

    \(\cfrac { -5\pi }{ 6 } \)

    (b)

    \(\cfrac { -2\pi }{ 3 } \)

    (c)

    \(\cfrac { -3\pi }{ 4 } \)

    (d)

    \(\cfrac { -\pi }{ 2 } \)

  11. The principal argument of the complex number \(\frac { \left( 1+i\sqrt { 3 } \right) ^{ 2 } }{ 4i\left( 1-i\sqrt { 3 } \right) } \) is

    (a)

    \(\frac { 2\pi }{ 3 } \)

    (b)

    \(\frac { \pi }{ 6 } \)

    (c)

    \(\frac { 5\pi }{ 6 } \)

    (d)

    \(\frac { \pi }{ 2 } \)

  12. If \(\alpha \) and \(\beta \) are the roots of x2+x+1 = 0, then \({ \alpha }^{ 2020 }+{ \beta }^{ 2020 }\) is

    (a)

    -2

    (b)

    -1

    (c)

    1

    (d)

    2

  13. The product of all four values of \(\left( cos\cfrac { \pi }{ 3 } +isin\cfrac { \pi }{ 3 } \right) ^{ \frac { 3 }{ 4 } }\) is

    (a)

    -2

    (b)

    -1

    (c)

    1

    (d)

    2

  14. If \(\omega \neq 1\) is a cubic root of unity and \(\left| \begin{matrix} 1 & 1 & 1 \\ 1 & { -\omega }^{ 2 }-1 & { \omega }^{ 2 } \\ 1 & { \omega }^{ 2 } & { \omega }^{ 7 } \end{matrix} \right| \) = 3k, then k is equal to 

    (a)

    1

    (b)

    -1

    (c)

    \(\sqrt { 3i } \)

    (d)

    \(-\sqrt { 3i } \)

  15. If z = 1-cos θ + i sin θ, then |z| = _____________

    (a)

    2 sin\(\frac { 1 }{ 3 } \)

    (b)

    2 cos\(\frac { \theta }{ 2 } \)

    (c)

    2|sin\(\frac { \theta }{ 2 } \)|

    (d)

    2|cos\(\frac { \theta }{ 2 } \)|

  16. 2  Marks

    10 x 2 = 20
  17. If z1= 3 - 2i and z= 6 + 4i, find \(\frac { { z }_{ 1 } }{ z_{ 2 } } \) in the rectangular form.

  18. Write the following in the rectangular form:
    \(\overline { \left( 5+9i \right) +\left( 2-4i \right) } \)

  19. If z = x + iy, find the following in rectangular form.
    \(Re\left( \frac { 1 }{ z } \right) \)

  20. Evaluate the following if z = 5−2i and w = −1+3i
    z w

  21. If z= 1-3i, z= - 4i, and z3 = 5, show that (z1z2)z= z1(z2z3)

  22. Write the following in the rectangular form:
     \(\overline { 3i } +\frac { 1 }{ 2-i } \).

  23. Find the modulus of the following complex number \(\frac { 2-i }{ 1+i } +\frac { 1-2i }{ 1-i } \)

  24. Show that the following equations represent a circle, and, find its centre and radius
    \(\left| 2z+2-4i \right| =2\)

  25. If z1 and z2 are 1-i, -2+4i then find Im\(\left( \frac { { z }_{ 1 }{ z }_{ 2 } }{ \bar { { z }_{ 1 } } } \right) \).

  26. Find the values of the real number x and y if 3x + (2x - 3y) i = 6 + 3i9.

    1. 3 Marks


    10 x 3 = 30
  27. If \(\frac { z+3 }{ z-5i } =\frac { 1+4i }{ 2 } \), find the complex number z in the rectangular form

  28. Obtain the Cartesian form of the locus of z = x + iy in each of the following cases:
     Im[(1−i)z+1] = 0

  29. Obtain the Cartesian form of the locus of z = x + iy in each of the following cases:
    |z + i| = |z - 1|

  30. If \(\omega \neq 1\) is a cube root of unity, show that \(\left( 1+\omega \right) \left( 1+{ \omega }^{ 2 } \right) \left( 1+{ \omega }^{ 4 } \right) \left( 1+{ \omega }^{ 8 } \right) ...\left( 1+{ \omega }^{ { 2 }^{ 11 } } \right) =1\).

  31. If z = 2−2i, find the rotation of z by θ radians in the counter clockwise direction about the origin when \(\theta =\frac { 2\pi }{ 3 } \).

  32. Given the complex number z = 3 + 2i, represent the complex numbers z, iz, and z + iz in one Argand diagram. Show that these complex numbers form the vertices of an isosceles right triangle.

  33. Explain the falacy:

  34. Show that the complex numbers 3 + 2i, 5i, -3 + 2i and -i form a square.

  35. Find the locus of z if |3z - 5| = 3 |z + 1| where z = x + iy.

  36. If \(\frac { (a+i)^{ 2 } }{ 2a-i } \) = p + iq, show that p2+q2\(\frac { ({ a }^{ 2 }+i)^{ 2 } }{ 4a^{ 2 }+1 } \).

    1. 5 Marks


    7 x 5 = 35
  37. If z1, z2, and z3 are three complex numbers such that |z1| = 1, |z2| = 2|z3| = 3 and |z+ z+ z3| = 1, show that |9z1z+ 4z1z+ z2z3| = 6

  38. If z = x + iy and arg \(\left( \frac { z-i }{ z+2 } \right) =\frac { \pi }{ 4 } \), then show that x+ y+ 3x - 3y + 2 = 0

  39. Show that \(\left( \frac { \sqrt { 3 } }{ 2 } +\frac { i }{ 2 } \right) ^{ 5 }+\left( \frac { \sqrt { 3 } }{ 2 } -\frac { i }{ 2 } \right) ^{ 5 }=-\sqrt { 3 } \)

  40. Prove that the values of \(\sqrt [ 4 ]{ -1 } arr\ \pm \frac { 1 }{ \sqrt { 2 } } \left( 1\pm i \right) \). Let z = (-1)

  41. If z = x + iy and arg\(\left( \frac { z-1 }{ z+1 } \right) =\frac { \pi }{ 2 } \), then show that x+ y= 1.

  42. Show that \(\left( \frac { i+\sqrt { 3 } }{ -i+\sqrt { 3 } } \right) ^{ 2\omega }+\left( \frac { i-\sqrt { 3 } }{ i+\sqrt { 3 } } \right) ^{ 2\omega }\) = -1

  43. Verify that 2 arg(-1) ≠ arg(-1)2

*****************************************

Reviews & Comments about 12th Standard Maths English Medium Complex Numbers Reduced Syllabus Important Questions 2021

Write your Comment