#### 12th Standard Maths English Medium Free Online Test Creative 1 Mark Questions - Part Four

12th Standard

Reg.No. :
•
•
•
•
•
•

Maths

Time : 00:10:00 Hrs
Total Marks : 10

10 x 1 = 10
1. If A =$\left( \begin{matrix} cosx & sinx \\ -sinx & cosx \end{matrix} \right)$ and A(adj A) =$\lambda$ $\left( \begin{matrix} 1 & 0 \\ 0 & 1 \end{matrix} \right)$ then $\lambda$ is

(a)

sinx cosx

(b)

1

(c)

2

(d)

none

2. If a = 1+i, then a2 equals

(a)

1-i

(b)

2i

(c)

(1+i)(1-i)

(d)

i-1

3. If x is real and $\frac { { x }^{ 2 }-x+1 }{ { x }^{ 2 }+x+1 }$ then

(a)

$\frac{1}{3}$ ≤k≤

(b)

k≥5

(c)

k≤0

(d)

none

4. The number of real solutions of the equation $\sqrt { 1+cos2x } ={ 2sin }^{ -1 }\left( sinx \right) ,-\pi <x<\pi$ is

(a)

0

(b)

1

(c)

2

(d)

infinte

5. Equation of tangent at (-4, -4) on x2 = -4y is

(a)

2x - y + 4 = 0

(b)

2x + y - 4 = 0

(c)

2x - y - 12 = 0

(d)

2x + y + 4 = 0

6. If $\overset { \rightarrow }{ d } =\overset { \rightarrow }{ a } \times \left( \overset { \rightarrow }{ b } \times \overset { \rightarrow }{ c } \right) +\overset { \rightarrow }{ b } \times \left( \overset { \rightarrow }{ c } \times \overset { \rightarrow }{ a } \right) +\overset { \rightarrow }{ c } \times \left( \overset { \rightarrow }{ a } +\overset { \rightarrow }{ b } \right)$, then

(a)

$\left| \overset { \rightarrow }{ d } \right|$

(b)

$\overset { \rightarrow }{ d } =\overset { \rightarrow }{ a } +\overset { \rightarrow }{ b } +\overset { \rightarrow }{ c }$

(c)

$\overset { \rightarrow }{ d } =\overset { \rightarrow }{ 0 }$

(d)

a, b, c are coplanar

7. Equation of the normal to the curve y=2x2+3 sin x at x=0 is

(a)

x + y = 0

(b)

3y = 0

(c)

x + 3y = 7

(d)

x + 3y = 0

8. If x = r cos θ, y = r sin, then $\frac { \partial r }{ \partial x }$ = ....................

(a)

sec θ

(b)

sin θ

(c)

cos θ

(d)

cosec θ

9. The solution of (x2-ay)dx=(ax-y2)dy is

(a)

y=x2+y2-a(x+y)

(b)

y=x2+y2-a(x+y)

(c)

x3+y2=3ayx+c

(d)

(x2-ay)(ax-y2)=0

10. The Identity element of $\left\{ \left( \begin{matrix} x & x \\ x & x \end{matrix} \right) \right\}$ |x$\in$R, x≠0} under matrix multiplication is

(a)

$\left( \begin{matrix} 1 & 0 \\ 0 & 1 \end{matrix} \right)$

(b)

$\left( \begin{matrix} \frac { 1 }{ 4x } & \frac { 1 }{ 4x } \\ \frac { 1 }{ 4x } & \frac { 1 }{ 4x } \end{matrix} \right)$

(c)

$\left( \begin{matrix} \frac { 1 }{ 2 } & \frac { 1 }{ 2 } \\ \frac { 1 }{ 2 } & \frac { 1 }{ 2 } \end{matrix} \right)$

(d)

$\left( \begin{matrix} \frac { 1 }{ 2x } & \frac { 1 }{ 2x } \\ \frac { 1 }{ 2x } & \frac { 1 }{ 2x } \end{matrix} \right)$