#### 12th Standard Maths English Medium Free Online Test Creative One Mark Questions with Answer Key - Part Five

12th Standard

Reg.No. :
•
•
•
•
•
•

Maths

Time : 00:10:00 Hrs
Total Marks : 10

10 x 1 = 10
1. If A is a square matrix that IAI = 2, than for any positive integer n, |An| =

(a)

0

(b)

2n

(c)

2n

(d)

n2

2. If $\rho$(A) = r then which of the following is correct?

(a)

all the minors of order n which do not vanish

(b)

'A' has at least one minor "of order r which does not vanish and all higher order minors vanish

(c)

'A' has at least one (r + 1) order minor which vanish

(d)

all (r + 1) and higher order minors should not vanish

3. If z=$\frac { 1 }{ 1-cos\theta -isin\theta }$, the Re(z) =

(a)

0

(b)

$\frac{1}{2}$

(c)

cot$\frac { \theta }{ 2 }$

(d)

$\frac{1}{2}$cot$\frac { \theta }{ 2 }$

4. Let a > 0, b > 0, c >0. h n both th root of th quatlon ax2+b+C= 0 are

(a)

real and negative

(b)

real and positive

(c)

rational numb rs

(d)

none

5. Equation of tangent at (-4, -4) on x2 = -4y is

(a)

2x - y + 4 = 0

(b)

2x + y - 4 = 0

(c)

2x - y - 12 = 0

(d)

2x + y + 4 = 0

6. If $\overset { \rightarrow }{ a }$,$\overset { \rightarrow }{ b }$ and $\overset { \rightarrow }{ c }$ are any three vectors, then $\overset { \rightarrow }{ a } \times \left( \overset { \rightarrow }{ b } \times \overset { \rightarrow }{ c } \right) =\overset { \rightarrow }{ a } \times \left( \overset { \rightarrow }{ b } \times \overset { \rightarrow }{ c } \right)$ if and only if

(a)

$\overset { \rightarrow }{ b }$$\overset { \rightarrow }{ c }$ are collinear

(b)

$\overset { \rightarrow }{ a }$ and $\overset { \rightarrow }{ c }$ are collinear

(c)

$\overset { \rightarrow }{ a }$ and $\overset { \rightarrow }{ b }$ are collinear

(d)

none

7. The point on the curve y=x2 is the tangent parallel to X-axis is

(a)

(1,1)

(b)

(2,2)

(c)

(4,4)

(d)

(0,0)

8. If y = sin x and x changes from $\frac{\pi}{2}$ to ㅠ the approximate change in y is ..............

(a)

0

(b)

1

(c)

$\frac{\pi}{2}$

(d)

$\frac{22}{14}$

9. The solution of $\frac{dy}{dx}+y$ cot x=sin 2x is

(a)

y sin x=$\frac{2}{3}$sin3x+c

(b)

y sec x=$\frac{x^2}{2}+c$

(c)

y sin x =c+x

(d)

2y sin x=sin x-$\frac{sin\ 3x}{3}+c$

10. If $f(x)={ Cx }^{ 2 }={ cx }^{ 2 },0<x<2$ is the p.d.f, of x then c is

(a)

$\cfrac { 1 }{ 3 }$

(b)

$\cfrac { 4 }{ 3 }$

(c)

$\cfrac { 8 }{ 3 }$

(d)

$\cfrac { 3 }{ 8 }$