" /> -->

Important 3 Mark Creative Questions (New Syllabus) 2020

12th Standard EM

    Reg.No. :
  •  
  •  
  •  
  •  
  •  
  •  

Maths

Time : 01:00:00 Hrs
Total Marks : 57

    Part A

    19 x 3 = 57
  1. Verify that (A-1)T = (AT)-1 for A=\(\left[ \begin{matrix} -2 & -3 \\ 5 & -6 \end{matrix} \right] \).

  2. Find the locus of Z if |3z - 5| = 3 |z + 1| where z=x+iy.

  3. Solve: 2x+2x-1+2x-2=7x+7x-1+7x-2

  4. Evaluate \(cos\left[ { cos }^{ -1 }\left( \cfrac { -\sqrt { 3 } }{ 2 } +\cfrac { \pi }{ 6 } \right) \right] \)

  5. Find the equation of the hyperbola whose conjugate axis is 5 and the distance between the foci is 13.

  6. If \(\overset { \rightarrow }{ a } +\overset { \rightarrow }{ b } +\overset { \rightarrow }{ c } =0\) then show that \(\overset { \rightarrow }{ a } \times \overset { \rightarrow }{ b } =\overset { \rightarrow }{ b } \times \overset { \rightarrow }{ c } =\overset { \rightarrow }{ c } \times \overset { \rightarrow }{ a } \)

    ()

    lies in the plane containing \(\overset { \rightarrow }{ b } \) and \(\overset { \rightarrow }{ c } \)

  7. A cylindrical hole 4 mm in diameter and 12 mm deep in a metal block is reboared to increase the diameter to 4.12mm. Estimate the amount of metal removed

  8. Find two numbers whose sum is 100 and whose product is a maximum.

  9. If w = xy + z where x = cos t; y = sin t; z = t find \(\frac{dw}{dt}\)

  10. If w=xy+z and x=cot, y=sint, z=t then find \(\cfrac { dw }{ dt } \)

  11. z is a homogeneous function in x and y of degree n then prove that \(x\cfrac { \partial z }{ \partial x } +y\cfrac { \partial z }{ \partial y } =(ax+by+n)\) ,where v=zeax+by

  12. Evaluate \(\int _{ 3 }^{ 6 }{ \cfrac { \sqrt { x } }{ \sqrt { 9 } -x+\sqrt { x } } dx } \)

  13. Evaluate \(\int _{ 0 }^{ \frac { \pi }{ 2 } }{ { sin }^{ 0 }xdx } \)

  14. Form the D.E of the family of curves c(y+c)2=x2,where c is the parameter.

  15. Solve :(x2-yx2)dy+(y2+x2y2)dx=0

  16. From a lot of 10 bulbs, which includes 3 defective bulbs, a sample of 2 bulbs is drawn at random. Find the probability distribution of defective bulbs.

  17. In 3 trials of a binomial distribution, the probability of 2 success is 9 times the probability of 3 success. Find the parameter of p of the distribution.

  18. Let X be a continuous random variable with \(f(x)=\begin{cases} \frac { 2 }{ { x }^{ 4 } } ,x\ge 1 \\ 0,otherwise \end{cases}\) Find the mean and the variance of X.

  19. On the set Q of rational numbers, an operation * is defined as a*b=k(a+b) where k is a given non zero number. Is it associative

*****************************************

TN 12th Standard EM Maths free Online practice tests

Reviews & Comments about 12th Standard Maths English Medium Important 3 Mark Creative Questions (New Syllabus) 2020

Write your Comment